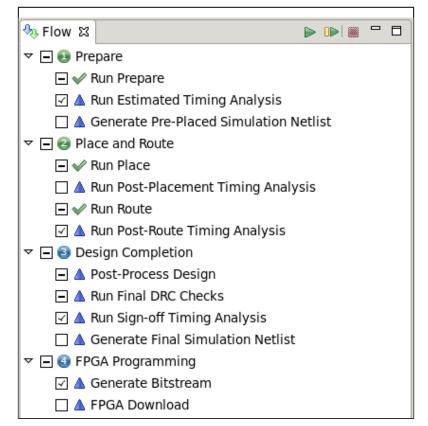
Understanding ACE Timing Reports (AN024)

Achronix[®] Data Acceleration

Application Note


January 29, 2021

Accurate timing constraints and proper understanding of timing analysis reports are critical to successful FPGA design projects. This application note introduces ACE users to the structure of ACE timing reports generated during an ACE place-and-route run. It shows how basic timing constraints are used to drive static timing analysis (STA), and how these constraints are represented in timing reports. The following sections describe the timing reports generated by the ACE flow, as well as how they are presented in the ACE GUI.

Timing analysis is driven by SDC, with the minimum constraint to any design being the specification of a clock via a create_clock constraint. For details of all SDC timing commands supported by ACE, refer to the section, SDC Commands, in the ACE User Guide (UG070).

Configuration of the Default Timing Reports

The ACE place and route flow is integrated with STA, which is run throughout the flow. Timing reports are generated if the user enables the various timing analysis steps as shown here, in the **Project View** \rightarrow **Flow** tab:

Figure 1: Selected Timing Analysis Steps in Flow

To enable specific timing reports during the flow, ensure that the box to the left of the report step to be run is checked. These include:

- Run Estimated Timing Analysis
- Run Post-Placement Timing Analysis
- Run Post-Route Timing Analysis
- Run Sign-off Timing Analysis

The reports above are generated during the flow, and the user can explore these reports in the ACE GUI while the flow is running. All of the reports generated are located in the active implementation directory (default: impl_1) reports/ sub-directory and come in three formats:

- HTML which is the version available in the ACE GUI
- CSV (comma delimited)
- TXT, which is the raw ASCII output

Running Timing Analyses

Run Estimated Timing Analysis

Prior to running placement, you can run an estimated timing analysis. For a new design it is recommended to run timing at this stage, and to look at the results in order to get a sense of the timing paths, as well as to observe how the timing constraints are being applied by the timer.

At the Estimated Timing Analysis stage, instance and net delays are estimates that can change after placement, and again after routing. However, some of the timing numbers in the reported timing paths are static and come from the SDC inputs to ACE. These define the arrival times of the clocks input ports (i.e., clock insertion delays), as well as the data arrival times and required times at the IPINs and OPINs. These arrival and required times appear in all timing reports. The most basic timing constraints that govern this come in the form of SDC commands.

Note

Clock insertion delays in these reports are estimated as are the data path delays. For flop-to-flop timing paths in the same clock domain, the clock skew will be zero.

Run Post-Placement Timing Analysis

After running placement the user can run timing analysis reports again by clicking on the box next to the Run Post-Placement Timing Analysis step in the **Project Perspective** \rightarrow **Flow tab.** By default, the placed timing reports are not enabled.

The timing constraints shown in these reports will be identical to the constraints show in the Estimated Timing Analysis reports. However, now the cells in the path have been placed and the delay through the cell instances and their respective nets will have changed. Therefore, the resultant timing paths reported at this stage will be different from the paths in the Estimated Timing Analysis reports.

Run Post-Route Timing Analysis

After routing the design a user can run timing analysis. These reports use the same timing corner as the previous reports and have exactly the same results as the final timing report generated in the Run Sign-off Timing Analysis flow step. These reports include instance location for all instances reported in the timing path. The instance sites are listed to the right of each of the instance input pins.

Run Sign-off Timing Analysis

At the end of the full flow, the user can run the sign-off timing analysis. All of the timing slacks reported must be positive (highlighted in green) in order to ensure that the design works in silicon.

Timing Report Sections

Timing Report - Routed

ACE -- Achronix CAD Environment Version 8.2.1 -- Build 192561 -- Date 2020-09-14 08:57 Design: proj_1 - impl_3 - flexcore Device: AC7t1500ES0 C2 0.85V 0C Generated on Wed Dec 02 07:17:29 PST 2020 Host: **<host name>** Timing Analysis at: 0C Time unit: 1 ns

<u>Current Results Summary</u>

<u>Current Results Details</u>

Figure 2: Timing Report Header

Below are the annotations for the figure above.

- The first line in the report indicates to which step in the flow the timing report is related: Timing Report -<flow step>.
- 2. The second line indicates the ACE build version.
- 3. The third line indicates the <active project> <active impl> <design name>.
- 4. The fourth line contains the name of the device, as well as the timing corner (speed grade, core voltage, junction temperature) specific to the report. The timing corner will be the same as the corner defined in the Project Perspective → Design Preparation tab.
- 5. The fifth line indicates the date and time that the report was generated.
- 6. The sixth line indicates the host name where the ACE run is running when the report was generated.
- The seventh line indicates the temperature corner. It is the same value as the junction temperature for Speedster FPGAs, but for Speedcore eFPGAs it can have different values depending on the temperature corner.

- 8. The eight and last line is the time units that are used in all of the timing report delay and slack related entries.
- 9. The timing reports are divided into two main sections: Summary and Details.

Note

It is recommended to run the ACE flow using the lowest temperature corner as this typically produces worst-case cycle times. This corner is design dependent and, therefore, it is worthwhile running the ACE flow at all temperatures to see which one achieves the best final timing. Also, regardless of which temperature ACE is configured in the **Design Preparation** \rightarrow **Junction Temperature** setting, all temperatures are measured by the timer and timing issues resolved by the flow.

The HTML version of the file enables the user to navigate the report file using HTML hypertext buttons indicated with **blue** text in the GUI at any time.

Current Results Summary

The timing slack numbers are highlighted to help draw attention to them. In the following report there are negative slack numbers (highlighted in yellow), because the slack value reported is a violation. A positive slack is highlighted in green.

ımmar	у										
<u>Critica</u> <u>Critica</u> <u>Critica</u>	Timing Paths Slow Corner Setup (max) Timing Paths Slow Corner Hold (min) Timing Paths Jas Corner Setup (max) Timing Paths Jas Corner Hold (min) Teguencies										
		Critical Timing Pa	ths - Slow Corner - Setup (max)								
Path									Delay (ns)		
Path Id	From To				Clock / Group	Required	Arrival	Slack			
<u>sc_s0</u> 1	vrap.dut_zPipedi_iMf_stage_10_	doing_init[0]					clk_core	4.416	4.017	+0.399	
<u>sc_s10</u>	vrap.top_ps0_inst dut_inst_ps_Z_IBridge_0_inst_ctr_fifo_inst_0_fifomem_inst_0_data_dut_inst_p	wrap.top_ps0_inst .dut_inst_ps_2_iBridge_0_inst_data_me	vrap.top_ps0_inst .dut_inst_ps_2_lBridge_0_inst_data_mem_1_inst_0_data_dut_inst_ps_2_iBridge_0_inst_data_mem_1_inst_0_data_0_4					8.136	6.208	+1.914	
	wana ben poly ind ware poly poly poly ind ware poly poly poly poly poly poly poly poly						**async_default**	8.309	6.066	+2.228	
Critical Timing Paths - Slow Corner - Hold (min)					D	elay (ns)					
Path Id	Path To			Clock / Group	Required		Slack				
sc h0	request_data_0[9]	wrap.dut_zflop_req_1_iMf_zFlatpipe_stage_09_		dk core	2.133	0.316	-1.809*				
sc h10	wrap.dut_iMactop_zTopflop_0_iMf_stage_0249_	wrap.dut_iMactop_zTopflop_0_iMf_stage_1_249_		dk_mac	1.843	1.880	+0.033				
sc_h20	wrap.top_pb0_inst.top_pb0_qe0_inst.dut_iLength_smem_zmem_raddrm_4_	wrap.top_pb0_inst.top_pb0_qe0_inst.dut_iLength_smem_zmem_da	ta_dut_iLength_smem_zmem_data_0_0	**async_default**	1.791	2.035	+0.233				
		Critical Timing Pa	ths - Fast Corner - Setup (max)								
Path							Delay (ns)				
Path Id	From	То					Clock / Group	Required	Arrival	Slack	
fc_s0 v	rrap.dut_zPipedi_iMf_stage_10_	doing_init[0] cl				clk_core	4.416	2.737	+1.679		
	vrap.top_ps0_inst dut_inst_ps_2_iBridge_0_inst_ctr_fifo_inst_0_fifomem_inst_0_data_dut_inst_ps	wrap.top_ps0_inst .dut_inst_ps_2_iBridge_0_inst_data_mem_1_inst_0_data_dut_inst_ps_2_iBridge_0_inst_data_mem_1_inst_0_data_0_4					clk_mac	7.707	4.202	+3.496	
<u>tc_s20</u> o	lk_mac	wrap.top_ps0_inst .dut_inst_ps_2_lBridge_0_inst_data_mem_0_inst_0_data_dut_inst_ps_2_lBridge_0_inst_data_mem_0_inst_0_data_0_3				**async_default**	7.162	3.576	+3.595		
Critical Timing Paths - Fast Corner - Hold (min) Path - Path Path Path Path Path Path Path Path											
Path Id From To				Clock / Group	Required		Slack				
fc h0	request_data_0[9]	wrap.dut_zflop_req_1_iMf_zFlatpipe_stage_09_		clk core	1.501	0.174	-1.321*				
fc h10	wrap.dut_IMactop_zTopflop_0_IMf_stage_0_249_				1.273	1.283	+0.007				
fc h20	wrap.top pb0 inst.top pb0 qe0 inst.dut iLength smem zmem raddrm 4_	ta dut iLength smem zmem data 0 0	clk_mac **async default**		1.387	+0.151					

Figure 3: Current Results Summary

Each of the Summary and Details sections are divided into five timing sections, which are all specific to the timing corner defined in the header. In the Summary section, the Critical Timing Paths show the worst-case timing (timing that has the least amount of slack) for each section. In the Details section, there are the top ten paths (10 worst-case paths) reported for each section. Each of these sections report on each of the path groups defined in the different clock group sub-sections.

Note

By default, each defined clock creates a path group automatically, reporting unique sub-sections for each clock. Therefore, there are three setup/hold clock groups in the summary section above. The path ID for the 10 worst-case paths in the first path group is numbered from sc_s0 to sc_s9, for the second path group it is numbered from sc_s10 to sc_s19 and for the third path group it is numbered from sc_s20 to sc_s29.

Critical Timing Paths - Slow Corner - Setup (max)

This section has a path ID of sc_s0, and is the worst-case setup timing, using all of the max and late delays. This path ID is typically the worst-case for setup timing for the given timing corner.

Critical Timing Paths - Slow Corner - Hold (min)

This section has a path ID of sc_h0, and contains worst-case hold timing, using all of the max and late delays. This path ID can have the worst-case hold timing if the source of the hold timing violation is clock skew on a short data path.

Critical Timing Paths - Fast Corner - Setup (max)

This has a path ID of fc_s0, and is the worst-case setup timing, using all of the min and early delays. This path ID typically will not contain the worst-case timing, and if there are violations in this corner, the timing might be difficult to close.

Critical Timing Paths - Fast Corner - Hold (min)

This has a path ID of fc_h0, and contains worst-case hold timing, using all of the min and early delays. This path ID can contain the worst-case hold timing for short paths if clock skew is minimal.

Clock Frequencies

This section contains a summary of the setup-and-hold timing on a per clock group basis. In the following example of routed summary report, the negative setup slack of -1.809 is highlighted in yellow:

Collective Summary of All Corners					
	Slack (ns) Frequency (MHz)				
Clock / Group	setup	hold	Target	Upper Limit	Comment
clk_core	0.399	-1.809	150.2	159.7	
clk_mac	1.914	0.007	150.2	210.7	
async_default	2.228	0.151	150.2	225.9	

Upper limit of frequency on a clock may be bound by the upper limit of frequency on some other clocks which are generated from a common source clock. These clocks, if present, are labeled as 'limiting clocks' in comments below The 'Slack' column corresponds to the worst setup or hold slack values over all corners.

Figure 4: Clock Frequency Summary

Example Setup Timing Path, Flop to Flop

In the following example, the timing path is between two flops in the same clock domain (clk_mac). The following timing path labels each of the lines in a typical flop-to-flop one cycle, same clock, setup timing path, and indicates which of the timing values come from the SDC. The numbers highlighted in the timing report are explained in the information box below. Reports are configured to include both input pins and output pins, as well as nets. For each of the nets, the "Fanout" column indicates how many downstream input pins are connected to the output pin of that instance.

Path Id: sc_s13 🌗	
Startpoint: wrap.top_ps0_inst.dut_inst_ps_2_iBridge_0_reg_valid_bytes_1_ (rising edge-triggered flip-flop clocked by clk_mac(Engoint: wrap.top_ps0_inst.dut_inst_ps_2_iBridge_0_inst_data_mem_2_inst_0_data_dut_inst_ps_2_iBridge_0_inst_data_mem_2_inst_0_data_0.5 (risi Path Group: La pac 4 Path Type: max 6 Corner: isto	ng edge-triggered flip-flop clocked by clk_macj
Fanout Delay Time Description 🚯	
1.842 l.842 clock clk_mac (rise edge) 1.842 l.842 clock network delay (propagated)	
0.000 1.842 ^ wrap.top.ps0 inst.dut_inst.ps_2_iBridge_0_reg_walid_bytes_1/ck (DFFR_T) 0.042 1.884 ^ wrap.top_ps0_inst.dut_inst.ps_2_iBridge_0_reg_walid_bytes_1/q (DFFR_T) 3 wrap.top.ps0 inst.dut_inst.ps_2_iBridge_0_reg_walid_bytes[](net)	x_core.L[162][58].rlb.lg[2].ls[0].smux_seq_omux.seq[2]:clk
0.301 2.185 ^ wrap.top_ps0_inst.TOP_PS0_DUT_INST_PS_2_IBRIDGE_0_OUTCTR.dut_inst_ps_2_IBridge_0_olast_d016ltds_4/din1 (LUT6_T) 0.600 2.245 ^ wrap.top_ps0_inst.TOP_PS0_DUT_INST_PS_2_IBRIDGE_0_OUTCTR.dut_inst_ps_2_IBridge_0_olast_d016ltds_4/dout (LUT6_T) 3 wrap.top_ps0_inst.dut_inst_ps_2_IBridge_0_valid_cntls f(net)	x_core.L[161][58].rlb.lg[2].ls[1].lut[1]:in3h
0.259 2.504 ^ wrap.top_ps0_inst.TOP_PS0_DUT_INST_PS_2_IBRIDGE_0_OUTCTR.dut_inst_ps_2_iBridge_0_valid_cntlllto7/din0 (LUT6_T) 0.056 2.561 ^ wrap.top_ps0_inst.TOP_PS0_DUT_INST_PS_2_IBRIDGE_0_OUTCTR.dut_inst_ps_2_iBridge_0_valid_cntlllto7/dout (LUT6_T)	x_core.L(159)[56].rlb.lg(0].ls(0].lut(0]:in3h
29 wrap.top.ps0 inst.dut_inst.ps_2_lBridge_0_valid_cntl(net) 0.660 3.221 ^ wrap.top.ps0 inst.dut_inst.ps_2_lBridge_0_reg_mem_raddr_cnt_3_0_/din3 (LUT6_T) 0.659 3.279 w wrap.top.ps0 inst.dut_inst.ps_2_lBridge_0_reg_mem_raddr_cnt_3_0_/dout (LUT6_T)	x_core.L [155] [54] . rlb. lg[2] . ls [1] . lut [1] : in3h 🍞
24 wrap.top.psi.nt.dut_innt_psi_inrd_e0inrd_eest_rddf_cnt_3[0] (net) 1	ta 0 5/ n cm bram inode 352 (BRAM72K SDP T) x core.BMLP[28][8].logic.bmlp.bram[0]
(2) 6.660 6.660 clock (lk_mc(frisedge) 1.657 8.227 clock network delsy (crospagated) 0.666 8.163 clock uncertainty (2) 0.208 8.367 clock treenvergence pessiaist (2)	
8.367 ^ vrap.top.ps0_inst.dut_inst_ps_2_iBridge_0_inst_data_mem_2_inst_0_data_dut_inst_ps_2_iBridge_0_inst_data_mem_2_inst_0_dr 0.073 8.294 Library setup ince 8.294 data required ince	to_0_5/_n_cm_bram_inode_1234_ (BRAM/2K_SDP_1)
8.294 data required time -5.892 data arrival time	
2.409 slack (MET)	

Figure 5: Flop-to-flop Setup Timing Path

Below are the annotations for setup path info (the figure above):

- 1. Path ID. sc_s13 indicates it is a setup path in slow corner.
- 2. Source flop.
- 3. Capture flop.
- 4. Path group clk_mac identified by capture clock.
- 5. Path Type max indicates Setup.
- 6. Timing report columns:
 - a. Fanout column indicates net load.
 - b. Delay column indicates incremental net/cell delay.
 - c. Time column indicates cumulative delay.
 - d. The symbol ^/v in the description column imply rising and falling edge respectively.
- 7. Placement location
- 8. Clock uncertainty applies only to capture clock. There are two possible sources of clock setup uncertainty:
 - a. User-supplied SDC which contains the set_clock_uncertainty -setup constraint
 - b. The ACE default set_clock_uncertainty -setup value. These two sources are additive to each other, so if the user supplies uncertainty it is based on effects outside the ACE design.

Note

The clock uncertainty value used for setup timing path analysis can be, and usually is, different than the value used for hold timing path analysis.

- 9. CRPR. Clock re-convergence pessimism removal to remove timing inaccuracy caused by different min /max delay applied to a shared segment.
- 10. Setup time. The minimum time before clock edge that the data needs to be stable at the input.
- 11. Slack (data required time less data arrival time. A positive slack implies MET and a negative slack implies VIOLATED.

- 12. Clock arrival time at the top-level pin:
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
- 13. Clock cycle time (second edge). By default, the value for the clock's second edge comes from the create_clock -period value. With the first edge rising at time 0.000, and the second edge rising at the value of the period specified. Typically data paths have one cycle to get from the source register to the capture register. This time can vary if both edges of the clock are used, creating timing paths where there are different edges between the source clock edge and the capture clock edge. If the source clock edge is rising and the capture clock edge is falling, this value would either be 50% of the create_clock period or the second value of the create_clock waveform values.

Cell Instance Site Naming Convention

There is a naming convention for the cell instance sites that provides insight into the physical distance between an output pin and the next input pin. In general the instance names start with a location such as $x_{core.L[0][0].rlb.}$ [g[0].ls[0].lut. In the GUI's "Time Report - Routed" report, this is represented as:

x_core.L[0][0].rlb.lg[0].ls[0]

This instance is the first instance in the lower left-hand corner. The next instance to the right of it is named:

x_core.L[1][0].rlb.lg[0].ls[0]

The instance above the first instance is named:

x_core.L[0][0].rlb.lg[0].ls[1]

The naming convention increments up for cell instances in both the X and Y axis. Therefore, if there are two cell instances that are connected by a net, which have cell instance names that are separated by a large delta in the respective site names, the placement of these instances can contribute to large net delays, as is shown in the following example a snippet of the routed timing report having large delay between a LUT and a BRAM tile.

Figure 6: Large Net Delay Due to Instance Placement

The net's stage delay is very large due to the distance between the instance x_core.L[155][55]... and x_core. BMLP[28][3]... There can be a number of reasons to cause this delay, and looking at the placement in the context of the timing path can also shed more light. See Example Setup Timing Path Flop to OPIN (see page) to see one of the reasons that net delay might be long.

Example Hold Timing Path, Flop to Flop

The following timing path labels each of the lines in a typical flop-to-flop zero cycle, same clock, hold timing path.

re.L[155][55].rlb.lg[0].ls[1].lut[1]:in0

x_core.BMLP[28][3].logic.bnlp.bran[1]:i_rdaddrhi[2] BRAM tile x_core.BMLP[28][3].logic.bnlp.bran[1] x_core.BMLP[28][3].logic.bnlp.bran[1]

Path Id: sc_h10 🌗						
Startpoint: wrap.dut_iMactop_zTopflop_0_iMf_stage_0_249_ (rising edge-triggered flip-flop clocked by clk_mac) Endpoint: wrap.dut_iMactop_zTopflop_0_iMf_stage_1_249_ (rising edge-triggered flip-flop clocked by clk_mac) Path Group: clk_mac Path Type: min Corner: slow)					
Fanout Delay Time Description						
<pre></pre>						
9 0.000 0.000 clock clk_mac (rise edge) 2.061 2.061 clock network delay (propagated) 0.030 2.091 clock uncertainty -0.246 1.830 clock reconvergence pessimism 1.830 ^ vrap.dut_iMactop_ZTopflop_0_iMf_stage_1_249_/ck (DFFR_T) 0.014 1.843 library hold time 1.843 data required time						
-1.880 data arrival time 0.033 slack (MET) 7						
0.055 Stack (MET)						

Figure 7: Flop-to-flop Hold Timing Path

Below are the annotations for hold path info (the figure above):

- 1. Path ID. sc_h10 indicates it is a hold path in slow corner.
- 2. Source flop.
- 3. Capture flop.
- 4. Path group clk_mac identified by capture clock.
- 5. Path Type min indicates hold.
- 6. Hold time, minimum time after the clock edge that the data will need to propagate to output.
- Slack (data arrival time less data required time). A positive slack implies MET and a negative slack implies VIOLATED.
- 8. Clock arrival time at the top-level pin:
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
- 9. This edge is same as clock arrival edge for hold check.

I/O Timing Paths

Timing paths that include timing constraints that drive input ports to registers, as well as registers to output ports have additional timing constraints. The basic interactions are described in the following timing paths.

- Flop to OPIN setup timing
- Flop to OPIN hold timing

- IPIN to flop setup timing
- IPIN to flop hold timing

SDC commands are used to define the I/O timing relationships between clock and data.

Example Setup Timing Path, Flop to OPIN

In the following example, the timing path is between a flop and an OPIN in the same clock domain (clk_core).

```
Path Id: sc_s0 🌗
Startpoint: wrap.dut_zPipedi_iMf_stage_1__0_ (rising edge-triggered flip-flop clocked by clk_core) 2
Endpoint: doing_init[0] (output port clocked by clk_core)
Path Group: clk core 🙆
Path Type: max 5
Corner: slow
Fanout Delay Time Description
    8 0.000 0.000 clock clk_core (rise edge)
       1.870 1.870 clock network delay (propagated)
0.000 1.870 ^ wrap.dut_zPipedi_iMf_stage_1__0_/ck (DFFS_T) x_core.L[152][120].rlb.lg[2].ls[1].smux_seq_omux.seq[2]:clk
0.042 1.913 ^ wrap.dut_zPipedi_iMf_stage_1__0_/q (DFFS_T)
    1
                         doing_init[0]_p (net)
       1.995 3.908 ^ doing_init[0]_opin/din (OPIN_T)
0.109 4.017 ^ doing_init[0]_opin/dout (OPIN_T)
doing_init[0] (net)
                                                                              u ic east.u ic ew lc03.u ic ew luttile12.sg.slc4.opin:i data
    1
        0.000 4.017 ^ doing_init[0] (out)
               4.017
                         data arrival time
    9 6.660 6.660
                         clock clk_core (rise edge)
        0.100 6.760
                         clock network delay (propagated)
       -0.064 6.696
                         clock uncertainty
        0.000
               6.696
                         clock reconvergence pessimism
       -2.280
               4.416
                         output external delay 🚯
               4.416
                         data required time
                4.416
                         data required time
               -4.017
                         data arrival time
               0.399
                         slack (MET)
```

Figure 8: Flop to OPIN Setup Timing Path

Below are the annotations for output setup path info (the figure above):

- 1. Path ID. sc_s0 indicates it is a setup path in slow corner.
- 2. Source flop.
- 3. output port.
- 4. Path group clk_core identified by capture clock.
- 5. Path Type max indicates setup.
- 6. Output external delay constraint from SDC, time data is required to arrive at OPIN before the clock. The timing constraint for this value comes from a set_output_delay -clock -max SDC statement, specific to this data pin. In this case the value is 2.28, which is specific to clk_core.
- 7. Slack (data required time less data arrival time. A positive slack implies MET and a negative slack implies VIOLATED.

- 8. Clock arrival time at the top-level pin
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
- 9. Clock cycle time (second edge). By default, the value for the clock's second edge comes from the create_clock -period value. With the first edge rising at time 0.000, and the second edge rising at the value of the period specified. Typically data paths have one cycle to get from the source register to the capture register. This time can vary if both edges of the clock are used, creating timing paths where there are different edges between the source clock edge and the capture clock edge. If the source clock edge is rising and the capture clock edge is falling, this value would either be 50% of the create_clock period or the second value of the create_clock -waveform values.

Example Hold Timing Path, Flop to OPIN

The following example shows a hold timing path between a flop and an OPIN in the same clock domain (clk_core). The timing path labels each of the lines in a typical flop to OPIN, same clock, hold timing path. The SDC on the OPIN (set_output_delay) models a register at the output.

note

The following report is generated using interactive ACE STA command <code>report_checks</code> as it does not appear in the 10 worst negative-slack (WNS) paths reported under path group <code>clk_core</code> for hold. Interactive ACE is invoked using the command <code>prepare_sta</code>. This report differs from the others in that it does not contain placement information.

Startpoi Endpoint Path Gro	int: wrap (ris : reply_ oup: clk oe: min	s -to [all_outputs] -path_delay min -fields net dut_zConfflop_0_iMf_stage_36_ 1 ng edge-triggered flip-flop clocked by clk_core ata_0[6] (output port clocked by clk_core) 2 ore 3	
Fanout	Delay	Time Description	
1	0.00	0.00 clock clk core (rise edge)	
•	1.19	1.19 clock network delay (propagated)	
	0.00	1.19 ^ wrap.dut zConfflop 0 iMf stage 3 6 /ck	(DFFR T)
	0.03	l.21 ^ wrap.dut_zConfflop_0_iMf_stage_36_/q (
1		reply_data_0[6]_p (net)	_
	0.65	1.86 ^ reply_data_0[6]_opin/dout (OPIN_T)	
1		reply_data_0[6] (net)	
	0.00	1.86 ^ reply_data_0[6] (out)	
		1.86 data arrival time	
8	0.00	0.00 clock clk core (rise edge)	
-	0.22		
	0.03		
	0.00		
	0.20		
		0.45 data required time	
		0.45 data required time	
		1.86 data arrival time	
		1.41 slack (MET) 🌀	

Figure 9: Flop to OPIN Hold Timing Path

Below are the annotations for output hold path info (the figure above):

- 1. Source flop.
- 2. Output port.
- 3. Path group clk_core identified by capture clock.
- 4. Path Type min indicates hold.
- 5. Time data has to hold at the OPIN after clock. The timing constraint comes from a set_output_delay clock -min SDC statement specific to this data pin. The value here is 0.2.
- 6. Slack (data arrival time less data required time). A positive slack implies MET and a negative slack implies VIOLATED.

- 7. Clock arrival time at the top-level pin
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
 - c. Estimated clock network delay propagated beneath clock arrival time is an estimate of the clock latency to the clock pin of the source flop. The value of this estimate changes at different stages of the flow, and is set after routing.
- 8. This edge is same as clock arrival edge for hold check.

Example Setup Timing Path, IPIN to Flop

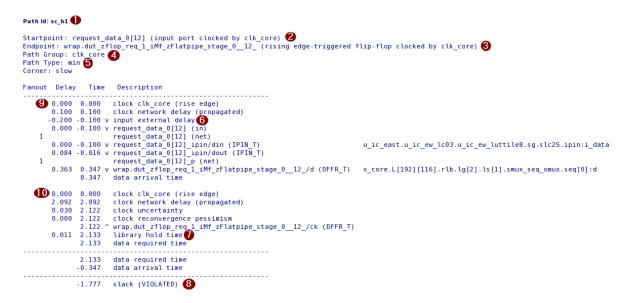
The following example illustrates a timing path between an IPIN and a flop in the same clock domain (clk_core). The timing path labels each of the lines in a typical IPIN to flop one cycle, same clock, setup timing path, and indicates which of the timing values come from the SDC. The delays from the IPIN are modeled as a register using the set_input_delay constraints.

note

The following report is generated using interactive ACE STA command report_checks, so it is slightly different then the other reports.

```
Startpoint: request we O[O] (input port clocked by clk core)
Endpoint: wrap.dut zflop req 5 iMf zFlatpipe stage 0 0
         (rising edge-triggered flip-flop clocked by clk core) 🖉
Path Group: clk core 🚯
Path Type: max 🕢
Corner: slow
Fanout
        Delay Time Description
    (3) (3)
                0.00 clock clk core (rise edge)
        0.22
               0.22
                     clock network delay (propagated)
               2.50 ^ input external delay 5
        2.28
               2.50 ^ request we 0[0] (in)
        0.00
                      request we O[O] (net)
   1
               2.62 ^ request we O[O] ipin/dout (IPIN T)
        0.12
   1
                      request we O[O] p (net)
        2.16
               4.79 ^ wrap.dut zflop req 5 iMf zFlatpipe stage 0 0 /d (DFFR T)
                4.79 data arrival time
     9 6.66
               6.66
                     clock clk core (rise edge)
        1.71
               8.37
                     clock network delay (propagated)
       -0.06
               8.30 clock uncertainty
                     clock reconvergence pessimism
        0.00
               8.30
               8.30 ^ wrap.dut zflop req 5 iMf zFlatpipe stage 0 0 /ck (DFFR T)
               8.28 library setup time 🚯
       -0.02
                      data required time
                8.28
               8.28
                     data required time
               -4.79 data arrival time
               3.51 slack (MET)
```

Figure 10: IPIN to Flop Setup Timing Path


Below are the annotations for input setup path info (the figure above):

- 1. Source input port.
- 2. Capture flop.
- 3. Path group clk_core identified by capture clock.
- 4. Path Type max indicates setup.
- 5. The command set_input_delay is a SDC that models a flop that drives data to input ports.
- 6. Setup time, minimum time before clock edge that the data needs to be stable at the input.
- Slack (data required time less data arrival time. A positive slack implies MET and a negative slack implies VIOLATED.

- 8. Clock arrival time at the top-level pin
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
- 9. Clock cycle time (second edge). By default, the value for the clock's second edge comes from the create_clock -period value. With the first edge rising at time 0.000, and the second edge rising at the value of the period specified. Typically data paths have one cycle to get from the source register to the capture register. This time can vary if both edges of the clock are used, creating timing paths where there are different edges between the source clock edge and the capture clock edge. If the source clock edge is rising and the capture clock edge is falling, this value would either be 50% of the create_clock period or the second value of the create_clock -waveform values.

Example Hold Timing Path, IPIN to Flop

The following timing path labels each of the lines in a typical IPIN to flop zero cycle, same clock, hold timing path, and indicates which of the timing values come from the SDC input constraints.

Figure 11: IPIN to Flop Hold Timing Path

Below are the annotations for input hold path info (the figure above):

- 1. Path ID. sc_h0 indicates it is a hold path in slow corner.
- 2. Source Input.
- 3. Capture flop.
- 4. Path group clk_core identified by capture clock.
- 5. Path Type min indicates hold.

- 6. External data delay. This delay value is defined in the set_input_delay constaint. In this case the -min option is used to indicate that this delay should be used when analyzing "Path Type: min" timing paths.
- 7. Hold time, minimum time after the clock edge that the data will need to propagate to output.
- 8. Slack (data arrival time less data required time). A positive slack implies MET and a negative slack implies VIOLATED.
- 9. Clock arrival time at the top-level pin:
 - a. The number displayed in the "Delay" column for the "Clock arrival time at the top level pin" comes directly from the SDC. It is equal to the applicable clock edge of the create_clock definition for the respective clock. The rise value is used in the above example, as the clock edge is listed as "^" or rise edge. By default, if these values are not explicitly set in the SDC syntax, the value here is set to time zero (0.000).
 - b. There are many ways to define a clock with the create_clock syntax. By default, the first asserted edge is a rising edge at time zero (0.000). This setting can be modified by using the create_clock -waveform option.
 - c. Estimated clock network delay propagated beneath clock arrival time is an estimate of the clock latency to the clock pin of the source flop. The value of this estimate changes at different stages of the flow, and is set after routing.
- 10. This edge is same as clock arrival edge for hold check.

References and Support

- Refer to the ACE User Guide (UG070) for detailed usage information.
- Vsit Achronix Support Portal for access to our knowledge base.
- Email questions to support@achronix.com.

Revision History

Version	Date	Description
1.0	29 Jan 2021	Initial Achronix release.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane Santa Clara, CA 95054 USA Website: www.achronix.com E-mail : info@achronix.com

Copyright © 2021 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor Corporation does not give any representations or warranties as to the completeness or accuracy of such information and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the information contained herein at any time and without notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://www.achronix.com/legal.