Software Development Kit
User Guide (UG107)

Speedster FPGAs

Preliminary Data

Achronix

Data Acceleration

Software Development Kit User Guide (UG107)

Copyrights, Trademarks and Disclaimers

Copyright © 2023 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedster and VectorPath
are registered trademarks, and Speedcore and Speedchip are trademarks of Achronix Semiconductor
Corporation. All other trademarks are the property of their prospective owners. All specifications subject to
change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable.
However, Achronix Semiconductor Corporation does not give any representations or warranties as to the
completeness or accuracy of such information and shall have no liability for the use of the information contained
herein. Achronix Semiconductor Corporation reserves the right to make changes to this document and the
information contained herein at any time and without notice. All Achronix trademarks, registered trademarks,
disclaimers and patents are listed at http://www.achronix.com/legal.

Preliminary Data

This document contains preliminary information and is subject to change without notice. Information provided
herein is based on internal engineering specifications and/or initial characterization data.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

Preliminary Data

Software Development Kit User Guide (UG107)

Table of Contents

Chapter - 1 Introduction 15
Chapter - 2: SDK Software Stack 16
Chapter - 3: Downloading, Compiling, and Installing the Achronix SDK 17
P gUISI S .« o ittt e e 18
Downloading the Achronix SDK o o et 19
Unzipping the Achronix SDK o e e e 19
Compiling and Installing the Achronix SDK e 19
Compiling and Installing the Achronix SDK for Use With the Achronix Driver 19
Compiling with Debug Symbols e e 20
Installing the SDK and Device Driver e ettt 20
Uninstalling the SDK and Device Driver o e e 21
Starting the DeVIiCe DriVer e e et e e e 21
Compiling and Installing the Achronix SDK for Use With the BittWare Driver 21
Compiling the AChronix SDK o e e et 21
Compiling with Debug Symbols e e 22
INStalling the QDK ... et e e e e 22
Uninstalling the SDK e e e et e e 23
Starting the Device Driver e e e 23
Testing the Achronix PCle Device Driver i 23
Testing the Achronix SDK ..o o e 24
Chapter - 4: Modifying the Device Drivero e 25
Modifying the Achronix Device Driver o i 25
Modifying the BittWare Device Driver e et 25
Chapter - 5: Developing Applications e 26
MinimUM ReQUITEMENTSt eeeeens 26
COMIPIIAT 0N e e 26
Developing Applications Without High-Level SDKCode ...ttt 26
Chapter - 6: The PCle Programming Model 27
Linux Host Memory Mapped Addressing ...ttt et e ettt et e 27
FPGA Memory AdAresSing .ottt ettt ettt et e e ettt s 27

Preliminary Data 3

Software Development Kit User Guide (UG107)

PCle Configuration EXamplettt 29
Example BAR Configuration o e e e 29
Example Software Implementation ...t e 30
Implementation ReComMMENdatioNSttt et e 31

Address Translation Unit (ATU)ottt et 31
BAR MatCh Mode ... e e e e 32
Address MatCh MOde e et e e 32

A S B 1 (=T g Vo € PP 33

DM A AN S S L ettt e e 33
2D NoC Physical Address Calculationsoi et et 33
Basic DM A Operation ...ttt e e e 34
LinKed LiSt MO0E . . oo et e e e e ettt e 36

Chapter - 7: Design Requirementst e 38

ACHIONIX LD D R P .« oottt et 38

AChIONIX _GD DR B PP ottt e 38

ACHIONIX P PP « vttt 38

D11 AN == 4] o] [= o o 38

Chapter - 8: SDK FUNCLIONS ... e et 39

Quick Reference Table e ettt 39

util_calc_nap_absolute_addr()ot 40
DS I P ON Lottt e 40
Call o e 40
AT UM BN S ..ttt e 40
RetUIN ValUe . .. e e e 40

util_wait_microseconds()ouiri i 41
D=1 o3 T o 1 ¥ 0 o PP 41
Call e e 41
AT UM BN & .ttt ettt e e e e e e e e 11
REtUIN ValUE ... e e 41

Ut _Wait _SECONAS() ..\ttt 42
DS P ON oo e 42
7 42
AL UM NS oottt ettt e e 42
RETUIN ValUE . . e et e e e e e 42

PCi_reg_wWrite_offSet()t 43

Preliminary Data 4

Software Development Kit User Guide (UG107)

DS I P I ON .. e e 43
Call e 43
AL UM NS Lttt e e 43
RetUIN ValUe . o e 43
pei_reg_read _offset()o 44
DS I P ON . e e e 44
Call e 44
AT UM NS et e e e e 44
RetUIN ValUe . .. e 44
pei_reg_set_bits_offSet()ot 45
DS PN oot e 45
Call e 45
N =T [g =T 1 45
RetUIN ValUe . . e 45
pci_reg_clear_bits_offset()ouiiiriii 46
DS I P ON Lottt e 46
Call o e 46
AT UM NS e e e 46
RetUIN ValUe . .o e e 46
pei_read_reg_ctrl_version(.........ouiiir i 47
DS I P ON .ttt 47
Call oo 47
AT UM BN S L oottt et e e 47
RetUIN ValUe .. o e 47
P lINK IS _UPD oot 48
DS I P I ON oottt e 48
Call e e 48
AU NS Lottt ettt e e 48
RetUIN ValUe . . . 48
dma_build_data_descriptor()ouinrin i 49
DB I P I ON e 49
Call e 49
AT UM NS L.ttt e e e e 49
RetUIN ValUe . .o e 49
dma_build_link_descriptor(.coiieiniii 50
DS PN Lt e 50
Call 50

Preliminary Data 5

Software Development Kit User Guide (UG107)

AT UM NS L e 50
REtUIN ValUe . .. e e 50
AMa Nt oo 51
DS I P ON Lot e 51
Call e e e e 51
AT BUMIBNES .« .ttt e e e e e e e e e 51
REtUIN ValUE .. e e 51
AMa_CONTI0 .ot 52
DS P ON oot e 52
Call . e e 52
AU NS .ottt ettt e 52
RETUIN ValUE . e e e e e e e e e 52
AMa_Startl) . ..o 53
DS I P ON .ttt e e 53
Call e e 53
AT UM NS e e e 53
RetUIN ValUe . . o e 53
AmMa_haltl .o 54
DE S PION oot e 54
Call e e 54
N =T [g =T 0 54
REtUIN ValUE . .. e e e e e e e e e 54
AmMa_print_stats()t 55
DS I P ON .ttt e e 55
Call e e 55
AT UM NS e e 55
RetUIN ValUe . oo o e e 55
AMa_get_Status()ot 56
DS I PN Lottt e 56
Call o e e e 56
N =T [g =Y L 56
RetUIN ValUE . .. e 56
AMa WAt ..o 57
DS PN . e 57
Call ottt 57
AU NS oottt ettt e 57
REtUIN ValUE ..o e e e e e e e 57

Preliminary Data 6

Software Development Kit User Guide (UG107)

AtU_ et _CONTEXE() . o\ttt 58
D=1 o] T 1 ¥ o o P 58
Call e 58
N =T [g 1= L 58
REtUIN ValUE . . oo e e e e e e 58

atu_fiNd_regions() ...t 59
DS I P ON Lottt e 59
Call e e 59
AT UM NS .t e 59
RetUIN ValUe . .. s e 59

AtU_ et _regION() . .ottt 60
DS I P ION e 60
Call o 60
AT UM BN S Lottt e et e e e e 60
REtUIN ValUE oo et 60

AtU_PUL_IeBION0 ..ottt 61
DS I P I ON .. e 61
Call oo 61
AL UM NS L.ttt e e 61
REtUIN ValUE ... i ettt e e e et e e 61

msix_is_enabled(...... ... 62
DS I P ON ..t e 62
Call e e 62
AT UM NS e 62
REtUIN ValUE . oo e e 62

msix_get_table_size() ...t 63
DS PN . e 63
Call o 63
N =T [g =T 1 63
REtUIN ValUE . . oo e e e e 63

MSIX_Et_CONtEXT() ...ttt 64
DS I P ON Lottt e e 64
Call o e e 64
AT UM NS e e e 64
RetUIN ValUe . .. e 64

MSIX_BET_VECTOr() ..ottt e 65
DS P ON et e 65

Preliminary Data 7

Software Development Kit User Guide (UG107)

Call e 65
AU NS Lottt ettt et e 65
REtUIN ValUE . . oo e e e e e e 65
msix_get_pending_bit() 66
DS I P I ON oo e e 66
Call oo e 66
AT UM NS Lot 66
REtUIN ValUE . .o et ettt e e 66
msix_set_function_mask() ...t 67
DS P ON Lt e e 67
Call et 67
N =T [=T 1 67
REtUIN ValUE . o e e e e 67
MSIX_Set_Vector_mMask()ttt 68
DS I P ON e e e 68
Call o 68
AT UM NS Lot e 68
REtUIN ValUE o et 68
MSIX_PriNt_VeCTOrS() . ..ottt 69
DS P ON oot e 69
Call o e 69
N =T [g =T LA 69
REtUIN ValUE . .o ettt e 69
MSIX_print_pending _bitsS(. ...t 70
DS P ON oot e 70
07 | O U 70
AT UM NS oottt e e 70
RETUIN ValUE . oo e e et e e e 70
MSIX_INTEITUDRT .ot 71
DS I P ON L oot e e e 71
Call e 71
AT UM NS Lottt e e 71
REtUIN ValUE .. e e 71
MSIX_INterrupt_wait()t 72
DS P ON oot e e 72
Call o 72
N =T [1= 72

Preliminary Data 8

Software Development Kit User Guide (UG107)

REtUIN ValUe . o ettt 72
MSIX_CanCel_Waitioii 73
DS P ON . e e 73
Call e e 73

AT UM BN S L oottt e e e e 73
REtUIN ValUE .. . o e 73
Chapter - 9: SDK StrUCtUIeS ..ot e ettt 74
DAt omMmMaNd _t oot 74
DS P ON oo e 74

D NI 0N .. e e 74
1= Lo £ 74
DM A DD AtaDES CrIP Ol oottt e 76
DS I P ON Lottt e e e 76

31 T V1 o 76
=Y o U 76
DM A LINK D S O P Or v ettt ettt ettt e e e 77
DS I Pt ON Lottt e e 77
D=3 T 1 o 77
=Y Lo £ 77
Chapter - 10: SDK ClasSeS . .ottt e e et et et 78
P DEVICE ettt 78
DS I P ON oottt e e e 78

3T V1 o P 78
MembEr FUNCHIONS ... et e ettt 79
DM AHOSIBUI e . . e 80
DS PN L ot e 80
D=3 7 1 o 80
MeEmMbBEr FUNCEIONS ...t i e e ettt e 80
DM A DD ESCIPIOr LISt . e e 82
DS I PN et e 82
DT NI 0N Lot e 84
MembEr FUNCHIONS ... e e e e ettt 84
ATU CON EXt .ot 86
DS I P ON e e 86

D NI ON L oo e 86
MeEmM e FUNCHIONS .o ettt ettt e e e 86

Preliminary Data 9

Software Development Kit User Guide (UG107)

ATUREION e e e 87
DS I P ON oottt e e e 87

D NI ON L e 87
MeEmMbEr FUNCHIONS ..o ettt ettt e e e 88

M S Ot Xt . oottt a1
DS PO oot e 91

D NIt O e 91
MeEmbEr FUNCHIONS ..t e e e e e e e il
1= 0 0] =Y =T PP a1
Chapter - 11: Driver Translation Resource Handles 93
ACX_PCIE_dev_handle ... 93
DS I P I ON oottt e 93
ACX _BAR _handle ... 93
DS I P I ON oottt e 93
ACX_DMA _buffer_handle ... 93
DS PN .. 93
Chapter - 12: Driver Translation Functions 94
ACX_PCie_deVvice_0PeNn()ot 94
DS I P I ON oottt 94
Call e 94

N =T [g =T 01 94
REtUIN ValUE . . oo e e e e e e 94
aCX_pCie_device_CloSe()ov it 95
DS I P ON Lottt e e e 95
Call e 95

AT UM NS ..ttt 95
RetUIN ValUe . . oo e 95
ACX_bar NIt .o 96
DS I P I ON e 96
Call e e 96

N =T [g =T L PP 96
REtUIN ValUE . .o ettt e e 96
acxX_bar_cleanupl)o 97
DS P ON L 97
Call e e 97

AN =0 0 1= 97

Preliminary Data 10

Software Development Kit User Guide (UG107)

REtUIN ValUE .o ettt 97
ACX_get_Dar_Size() ..o 98
DS I P I ON . e 98
Call o 98
AU NS ..ttt ettt et e e 98
REtUIN ValUE ... et e e e e e 98
acx_get_bar_start() i 99
DS I DI ON oo e e e 99
Call o e 99
AT UM NS Lttt e 99
REtUIN ValUE . .o et ettt e 99
acx_dma_mallocho.ori 100
DS P ON e e 100
Call e 100
N =T [=T 01 100
REtUIN ValUE . .o o e e e e 100
ACX_AMA_TIEE0) - . e ettt et 101
DS I P ON oottt e e e 101
Call o 101
AT UM BNES .« .t e 101
REtUIN ValUe .. et e 101
aCX_read _UINt8l)ttt 102
DS P N oot e 102
Call et e 102
N =T L 1= L 102
REtUIN ValUE . oo ettt e 102
acx_read _UINtIB()ot 103
DS I P I ON .t e e 103
Call o e 103
AU NS Lttt e 103
RETUIN ValUE . .. e e e e e et et e 103
ACX_read _UINt320) ...t 104
DS I P ON .. e e e 104
Call e e 104
AT UM NS e 104
RetUIN ValUe . . o e 104
acx_read _UINtBAD) ... 105

Preliminary Data 11

Software Development Kit User Guide (UG107)

DS I P ON .t e e 105
Call o e 105
AT UM NS Lo e 105
RetUIN ValUe . .o o e 105
ACX_WHTE _UINTB() . oot e 106
DS P ON . e 106
Call 106
AT UM BN S .ttt e e 106
REtUIN ValUE . .. e e 106
ACX_WIIte _UINIB0) ..ottt 107
DTS o1 4 T o S 107
Call e 107
AU NS oottt e e 107
REtUIN ValUE ..o e e e e et e e e 107
ACX_WHTE _UINTB2() ..ot 108
DS I P ON Lottt e 108
Call e 108
AT UM NS Lottt 108
REtUIN ValUE . .. e e e 108
ACX_WIIte _UINBA) . . oot e 109
DS P ON e e 109
Call 109
N =8 L =T 01 109
REtUIN ValUE . .o e e e e e 109
MSIX_STatus_tO_String()ttt 110
DS I P ON ottt e e e 110
Call o 110
AT UM NS .« .t e e 110
REtUIN ValUe .. et e 110
ACX_INterruPt _Wait()o 11
DS P ON ot e 111
Call o e 11
AT UM NS L.ttt e et e e e e 1
REtUIN ValUE .. ettt e 11
ACX_CaNCel_Wait])o 112
DS P ON L ottt e 112
Call o 112

Preliminary Data 12

Software Development Kit User Guide (UG107)

DY =1 0 T=T o £ PP 112
REtUIN ValUE oo ettt e 112
Chapter -13: Porting GUIdettt e 113
POrtiNg 10 Version L0 ... e 113
ACX Resource Handles e e e e 113
BARs and the acxsdk::PCIDevice ObjecCt e e 114

Part Name Removalso e e e 114
MiSCEIANEBOUS . . ittt e 114
ReVISION HiStOry ..o e 115

Preliminary Data 13

Software Development Kit User Guide (UG107)

Preliminary Data

14

Software Development Kit User Guide (UG107)

Chapter - 1: Introduction

The Achronix Software Development Kit (SDK) is a set of functions and data structures which enable users of the
Speedster®7t FPGA family to write applications that communicate with and control their designs using the PCle
interface. The SDK consists of pre-compiled binary (private) libraries, source code for common public libraries,
and source code for several example applications showing how common features can be implemented.

The SDK also contains the source code for a Linux PCle device driver. The SDK can optionally be compiled to
support either this native Achronix driver, or the PCle driver from BittWare depending on user requirements.
Contact BittWare to obtain the installer for their PCle driver, if desired.

Preliminary Data 15

https://www.bittware.com/contact/

Software Development Kit User Guide (UG107)

Chapter - 2: SDK Software Stack

The Achronix SDK is built on top of either the BittWare or Achronix device driver library. Either driver library
supplies low-level routines that provide the following functions:

® Bind to a VectorPath® S7t-VG6 accelerator card

® Open and close the VectorPath device

® Perform memory-mapped reads and writes to the device

® Allocate DMA buffers

® Perform other hardware-specific tasks
The device driver itself is built on top of the Linux kernel API. In order to support both BittWare and Achronix
drivers, the Achronix SDK includes a set of functions called driver translations. The Achronix driver translations

act as a layer between the Achronix SDK code and the native driver functions, providing common functionality
between the Achronix and BittWare drivers and allow for reuse of application code that supports both drivers.

Application code that must communicate with the PCle device therefore operates by calling the Achronix SDK
APIs and linking with the Achronix (and, optionally, BittWare) SDK shared libraries.

A conceptual diagram of the software stack is shown in the following figure.

Example Applicationl User Application

Achronix SDK

Achronix Driver Translations

Bittware Other
Board/ Board/
Vendor ID Vendor ID

Bittware Drivers Achronix Drivers
(PCle, DMA) (PCle, DMA)

Operating System

113824702-01.2023.03.29

Figure 1: Software Stack

Preliminary Data

16

Software Development Kit User Guide (UG107)

Chapter - 3: Downloading, Compiling, and Installing the

Achronix SDK

The Achronix SDK is shipped in the form of a Linux ZIP file. That file may be downloaded, unzipped, and
compiled in any suitable location. The example applications can even be run out of that same download location
if the environment is configured correctly, but this user guide assumes that, after compilation, the SDK is installed
into its standard location in / opt / achr oni x. Installation requires administrator (root) privileges. See the

included README. t xt file for details.

The unzipped Achronix SDK has the following directory structure:

Directory

Description

b <achronix SDK>

;B /doc
;r_7 /drivers

ﬁ /examples
% /ATU_example

/DMA example
/DMA simple example
/DMA_stability test
MSIX example

peek_poke

program bitstream

ﬁ /include
—=7 /1o
ﬁ /src

The root directory where the SDK is installed.

Location of this document.

Achronix PCle driver.
Library routines.
Achronix PCle driver tests.

Tools.

Demonstrates how to read and write configuration settings to the PCle
Address Translation Unit.

Demonstrates how to allocate a PCle buffer. Supports initiating a DMA
transaction using JTAG commands instead of a C++ application.

PCle DMA example using minimal code.

Continual DMA to all GDDR6 controllers. Can be used to demonstrate
system robustness.

Demonstrates how to use MSIX interrupts.

Simple register access routines.

Program a stagel .pcie bitstream file over PCle.

Include files for the /driver, /lib and /src modules.

Pre-compiled libraries for both the BW and Achronix driver functions.

Source code for a set of examples and public APIs into library functions.

113824702-07.2023.09.36

Figure 2: Achronix SDK Directory Structure

Preliminary Data

17

Software Development Kit User Guide (UG107)

Prerequisites

The Achronix SDK includes the source code for a native PCle device driver, allowing it to be used in a
standalone configuration with no dependencies. The Achronix SDK can also optionally be compiled with support
for the PCle device driver from BittWare. Before compiling with the BittWare driver, first install the BittWare
software development kit (SDK) for the VectorPath accelerator card, available from the BittWare VectorPath
developer portal at https://developer.bittware.com. See the Support Article for help getting started. Access to the
BittWare developer portal and the SDK download is available only to verified purchasers of the VectorPath
accelerator card. Please contact BittWare Support to obtain a developer account.

The following shows the default locations for installation of the BittWare SDK:

BittWare SDK Fll e Locations

BittWare include files : /usr/share/bittware-sdk/include
BittWare library files : /usr/lib/x86_64-1inux-gnu

If the BittWare SDK is installed to a different location, the appropriate entries in each of the Achronix makefiles
must be updated.

The Linux GCC compiler must also be installed and available in the path. The SDK requires C++ 14 support,
available in GCC versions 5.2 and later.

Note

The Achronix SDK is currently only available for the Linux platform with an installed Achronix

@ VectorPath S7t-VG6 accelerator card. It has been tested, and is certified to compile and link on Ubuntu
Linux 20.04 LTS and Ubuntu Linux 22.04 LTS. For support on other Linux distributions, Microsoft
Windows, or non-VectorPath cards, please contact support@achronix.com.

Preliminary Data 18

https://developer.bittware.com/products/s7t-vg6.php
https://support.achronix.com/hc/en-us/articles/4415140267156-Where-Can-I-Download-the-Software-Development-Kit-for-a-VectorPath-Card-

Software Development Kit User Guide (UG107)

Downloading the Achronix SDK

The Achronix SDK package, including this document, is shipped in the form of a zip file with a name that includes
the release number and date, such as achroni x_sdk_v1.9.1 2023_05_23-03_18_40. zi p. The file can be
downloaded from the Achronix support portal, using the knowledge base article, How do | Download the Achronix
SDK?.

Unzipping the Achronix SDK

Unzip the SDK using the standard Linux unzi p command as follows, substituting the current version number
and release date in the filename:

$ unzip achroni x_sdk_v1.9.1 2023 _05_23-03_18_40.zip

Compiling and Installing the Achronix SDK

The Achronix SDK must be compiled and installed before it can be tested or used to build a custom application.
Build instructions are slightly different depending on whether the Achronix or the BittWare PCle device driver is
used. For this reason, compilation instructions have been split into two separate sections:

® For use with the Achronix driver, please follow instructions in the Compiling and Installing the Achronix
SDK for use with the Achronix Driver (see page 19) section

® For use with the BittWare driver, please follow instructions in the Compiling and Installing the Achronix
SDK for use with the Bittware Driver (see page 21) section

Warning!

If both the Achronix and BittWare drivers are installed, they can conflict with each other. Both drivers
should NOT be installed at the same time unless they are configured to bind to different Vendor/Device
ID pairs. Refer to the Modifying the Device Driver (see page 25) section for information about
configuring devices to which the driver can bind.

Compiling and Installing the Achronix SDK for Use With the
Achronix Driver

Support for the Achronix PCle device driver is built by default. To build the driver and SDK libraries, follow these
steps:

$ cd SDK - Change to the source code directory
$ make clean - Delete all object (.0), shared object (.so) libraries, and executabl es
$ neke - Conpile the device driver, SDK, device driver test/tools applications, and SDK

exanpl e applications

The Achronix SDK libraries, | i b/ | i bacxsdk-priv-ac.soandlib/libacxsdk-pub. so, comprise all of the
functions defined in the header files in the / i ncl ude directory. These functions are available to any application
by linking the shared object files into any application build.

Preliminary Data 19

https://support.achronix.com/hc/en-us/articles/15234194799252-How-do-I-Download-the-Achronix-SDK-
https://support.achronix.com/hc/en-us/articles/15234194799252-How-do-I-Download-the-Achronix-SDK-

Software Development Kit User Guide (UG107)

The device driver is built as a kernel plugin object file, dri ver s/ acxpci e/ acxpci e. ko. An associated driver
APl library file, dri vers/ i b/l i bacxdev. so, comprises all of the functions defined in the dri vers/li b

/ acxdev_api . h header file. Applications built to support the Achronix PCle driver must also link to this shared
object file.

Compiling with Debug Symbols

In order to facilitate debugging, the SDK libraries and driver can optionally be compiled with debug symbols.
Follow these steps:

$ cd SDK - Change to the source code directory
$ make cl ean - Delete all object (.0), shared object (.so) libraries, and executables
$ make DEBUG=y - Conpile with debuggi ng synbols

Installing the SDK and Device Driver

This user guide assumes that the SDK and device driver are installed into a standard location, which is under
/ opt / achr oni x. Follow these steps:
Note

The installation procedure must be run with administrator (root) privileges.

$ cd SDK - Change to the source code directory
$ sudo meke install - Install the SDK

The installation location may be changed with an option to the make command as follows:

Note

@ This procedure is inteded for advanced users. Additional setup might be required to start the driver, link
and run applications from a non-standard location.

$ cd SDK - Change to the source code directory
$ sudo nmeke install |NSTALL_ROOT='/ny/location' - Install the SDK to an alternate |ocation

The installer prints verbose messages to the console indicating where the different components are being
installed. For example:

1. APlinclude files are installed in / opt / achr oni x/ i ncl ude.

2. API shared library files are installed in / opt / achr oni x/ | i b.

3. Symlinks to the shared libraries are created in a common location, which could be (depending on the
Linux distribution used):

® /lib

® /lib64

® /usr/lib
® /usr/lib64

Preliminary Data 20

Software Development Kit User Guide (UG107)

4. Achronix PCle driver files:
® The driver plugin is installed in / opt / achr oni x/ dri ver/ acxpci e. ko
® The driver plugin is also installed in / 1 i b/ nodul es/ $(unanme -r)/extral acxpci e. ko

® The driver test and tool binaries are installed in / opt / achr oni x/ bi n

Uninstalling the SDK and Device Driver

To remove the SDK and device driver files from the installation locations, follow these steps:

$ cd SDK - Change to the source code directory
$ sudo neke uninstall - Uninstall the SDK

The un-installation location may be changed with an option to the make command as follows:

$ cd SDK - Change to the source code directory
$ sudo nake uninstall |INSTALL _ROOT='/ny/location' - Uninstall the SDK froman alternate | ocation

Starting the Device Driver

If the device driver has been installed in the standard location under / | i b/ nodul es, as previously described, it
can be started automatically by rebooting the computer. The kernel finds and starts the driver automatically. It
can also be started manually without a reboot using the following command, run as root:

$ sudo nodprobe acxpcie - Start the Achroni x device driver

If the FPGA is already programmed with a bitstream that supports PCle, the driver binds to the device
immediately. Otherwise, the driver binds to the device after the FPGA is programmed.

Compiling and Installing the Achronix SDK for Use With the
BittWare Driver

Note

@ For information on installing/uninstalling, starting/stopping, and configuring the BittWare driver, please
follow the BittWare installation instructions.

Compiling the Achronix SDK

Support for the BittWare PCle device driver is not built by default. To build the SDK libraries, follow these steps:

$ cd SDK - Change to the source code directory

$ make cl ean - Delete all object (.0), shared object (.so) libraries, and
execut abl es

$ make USE_DRI VER=bittware - Conpile the SDK and SDK exanpl e applications

Preliminary Data 21

Software Development Kit User Guide (UG107)

The Achronix SDK libraries, | i b/ | i bacxsdk-priv.soandlib/libacxsdk-pub. so, comprise all of the
functions defined in the header files in the / i ncl ude directory. These functions are then available to any
application by linking the shared object files into any application build.

Compiling with Debug Symbols

In order to facilitate debugging, the SDK libraries and driver can optionally be compiled with debug symbols.
Follow these steps:

$ cd SDK - Change to the source code directory

$ nmake clean - Delete all object (.0), shared object (.so) libraries, and
execut abl es

$ make USE DRI VER=bi ttware DEBUG=y - Conpile w th debuggi ng synbol s

Installing the SDK

This user guide assumes that the SDK is installed into a standard location under / opt / achr oni x. Follow these
steps:

Note

The installation must be run with administrator (root) privileges.

$ cd SDK - Change to the source code directory
$ sudo make USE DRI VER=bittware install - Install the SDK

The installation location may be changed with an option to the make command as follows:

Note

@ This procedure is intended for advanced users. Additional setup might be required to link and run
applications from a non-standard location.

$ cd SDK - Change to the source code
directory
$ sudo nake USE DRI VER=bi ttware install |NSTALL_ROOT='/ny/location" - Install the SDK to an

alternate | ocation

The installer prints verbose messages to the console indicating where the different components are being
installed. For example:

1. APlinclude files are installed in / opt / achr oni x/ i ncl ude.

2. API shared library files are installed in / opt / achr oni x/ | i b.

Preliminary Data 22

Software Development Kit User Guide (UG107)

3. Symlinks to the shared libraries are created in a common location, which could be (depending on the
Linux distribution used)

® /lib

® /lib64

® Jusr/lib
® /usr/lib64

Uninstalling the SDK

To remove the SDK files from the installation locations, follow these steps:

$ cd SDK - Change to the source code directory
$ sudo meke uninstall - Uninstall the SDK

The un-installation location may be changed with an option to the make command as follows:

$ cd SDK - Change to the source code directory
$ sudo neke uninstall | NSTALL_ROOT='/my/location' - Uninstall the SDK froman alternate |ocation

Starting the Device Driver

See the documentation that comes with the BittWare SDK for instructions on starting the BittWare PCle device
driver.

Testing the Achronix PCle Device Driver

To verify that the VectorPath card and the Achronix PCle device driver (if used) have been installed properly, run
the driver unit tests as follows:

1. Make sure that the VectorPath card has been plugged into the system, and that is is programmed with a
bitstream containing a PCle configuration.
2. Start the Achronix driver as previously described:

$ sudo nodprobe acxpcie

3. Verify that the VectorPath card has been enumerated by the host, and that the driver has bound to it using
the built-in Linux | snod and | spci commands:

$ Isnmod | grep acx

acxpci e 16384 0

$ Ispci -d 1b59

65: 00. 0 Non-Essential Instrunentation [1300]: Device 1b59: 0069 (rev 01)

Preliminary Data 23

Software Development Kit User Guide (UG107)

4. Another option is to also look at the end of the kernel ker n. | og file to verify that the correct driver has

bound to the card. For example:

$ sudo tail -f /var/log/kern.log
Mar 7 20:42:24 sjc-1ab47 kernel: [767.684873] ac7t15xxnodul e | oaded: ACXDEV_2_ 0 _0217dev
Mar 7 20:42:24 sjc-lab47 kernel: [767.685016] ac7t15xx 0000: 65: 00. 0: acxdev_probe(vendor:

0x1b59 devi ce: 0x0069)

5. Run the following driver unit test commands:

$ sudo /opt/achronix/bin/test_open
$ sudo /opt/achronix/bin/test_dnaal |l oc
$ sudo /opt/achronix/bin/test_dbi

Testing the Achronix SDK

To verify that the SDK libraries and examples have been compiled and installed properly, run the DMA example
as follows:

1.

Ensure that the VectorPath card is plugged into the system, and that it is programmed with the
pci e_gddr 6_ddr4_vp_deno design bitstream, which can be downloaded separately from the Achronix
Support website.

Run the following command to see the available command line options:
$ <achr oni x_SDK>/ exanpl es/ DMA_exanpl e/ dma_exanpl e --hel p
Run the following command to perform a small DMA test:

$ <achroni x_SDK>/ exanpl es/ DVA_exanpl e/ dma_exanpl e -b 0x400000 -d H2D2H SIM -e DDR4 -f random

The test performs the following steps:

1.

Allocates two 4MB buffers on the host server.

2. Fills the first buffer with random data.

3. Transfers the contents of the buffer from the host to the device (the H2D direction) into the DDR4 memory

space.

4. Transfers the same data back from device to the host (the D2H direction) into the second memory buffer.
5. Compares the two buffers to verify that the data made the round trip without errors.

6. Computes the achieved bandwidth in each direction.

Preliminary Data 24

Software Development Kit User Guide (UG107)

Chapter - 4: Modifying the Device Driver

One aspect of the driver typically must be modified for every end application. Every PCle device must be
assigned a vendor ID and a device ID code, both of which are 4-digit hex (16-bit binary) numbers. The vendor ID
and device ID in the bitstream are configured in the ACE IP designer. In order to bind to the device in use, the
driver code must be configured to recognize the same vendor ID and device ID pair programmed into the device.
By default, the driver code is configured to recognize the Achronix vendor ID, 0x1b59, and a common device ID,
0x0069, used in most of the Achronix demonstration designs. The following instructions should be applied if
using custom vendor ID and/or device ID codes.

Modifying the Achronix Device Driver

The Achronix PCle device driver is intended to serve as a reference implementation that can be extended for
custom applications. Do the following to add support for custom ID codes:

1. Modify the file dri ver s/ acxpci e/ pci . h to add #def i ne values as needed:

/'l Supported PCle Vendor |D codes

#i f ndef PClI _VENDOR_| D_ACHRONI X

#define PCl _VENDOR | D ACHRONI X 0x1b59
#endi f

/1 Supported PCle device |ID codes
#define PCl _DEVI CE_| D ACHRONI X_TEST1 0x0069
#define PCl _DEVI CE_| D ACHRONI X TEST2 Oxface

2. Modify the file dri ver s/ acxpci e/ pci . ¢ to add new #define values to the pci _devi ce_i ds array:

const struct pci_device_id pci_device_ids[] = {
{PCI _DEVI CE(PCI _VENDOR | D_ACHRONI X, PClI _DEVI CE_I D_ACHRONI X_TEST1)},
{PCl _DEVI CE(PCI _VENDOR | D_ACHRONI X, PClI _DEVI CE_I D_ACHRONI X_TEST2) },
{0}

b

Modifying the BittWare Device Driver

Contact BittWare technical support for instructions to add support for custom Vendor and Device ID values.

Preliminary Data 25

Software Development Kit User Guide (UG107)

Chapter - 5: Developing Applications

To develop custom applications with the SDK, it is recommended to follow the same format as one of the existing
example applications. It is necessary to include the same BittWare and Achronix SDK header files, and to link
with the same set of shared library files. Consult the included makefiles for more detail.

Minimum Requirements

Compilation

The following are the minimum requirements necessary to compile and link the Achronix SDK into custom
software:

® Include the Achronix SDK header files in the / opt / achr oni x/ i ncl ude directory into C/C++ code
® Include the Achronix SDK shared object files in the / opt / achr oni x/ | i b directory when linking

® |f using the BittWare driver, ensure that the BittWare library files are installed in / usr/ | i b/ x86_64-
[i nux- gnu and that they are also included when linking

® [f the Achronix SDK shared-object (. so0) library files have been installed somewhere other than a standard
location (e.g., the default / | i b location), the environment variable LD_LI BRARY_PATH must be set to
include the location where those libraries can be found

Developing Applications Without High-Level SDK Code

Achronix suggests using the Achronix SDK high-level functions and constructs for ease of development.
However, it is recognized that, in some cases, it might be desired to forgo usage of the high-level SDK functions
and constructs to specially tune applications for specific needs. In this case, Achronix suggests using the driver
translations as a foundation for the application development to enable support for the use of current or future
drivers.

Preliminary Data 26

Software Development Kit User Guide (UG107)

Chapter - 6: The PCle Programming Model

PCle devices such as the VectorPath card are memory-mapped I/O devices, meaning that they present their
capabilities to the host CPU as one or more regions of memory that are mapped into the host memory space.
Software that reads from and writes to registers or memories on the FPGA implement those operations by
reading or writing to the appropriate address on the host. Reads and writes between host memory and device
memory, in either direction, can also be implemented using direct memory access (DMA) transactions though a
DMA controller built into the Speedster7t AC7t1500 FPGA. Finally, the device can also signal the host using
interrupts through the PCle standard MSI-X protocol. Each of these topics are discussed in more detail in the
following text.

In order to determine the correct address for a memory space in the FPGA, whether within the interface
subsystems (such as GDDR®6) or the fabric (such as a NAP), it is necessary to understand the differences
between how the FPGA and the host software map their address spaces.

Linux Host Memory Mapped Addressing

In order to implement the memory-mapped I/O abstraction, a PCle controller reads base address registers
(BARs) in the device. The BARs specify mappings from the host machine physical address space onto the PCle
device internal address space(s). Each BAR defines the size of an address space, and the local (host) base
address of a block of mapped memory. During PCle enumeration, for each BAR, the host allocates a memory
region of the size requested by the BAR, maps that memory into the host (usually 64-bit) physical memory
space, and writes the base address of that memory region into the BAR.

On the device side, each BAR maps to a memory region of the same size in the FPGA address space. When
host software must read from, or write to, a physical address covered by one of the BARs, it can request that the
device driver map that BAR physical addresses into the application virtual address space. Reads from or writes
to those virtual addresses are then intercepted by the host PCle controller, and then routed to the correct location
on the FPGA.

FPGA Memory Addressing

The FPGA maps all addresses into a 42-bit linear address space defined by the built-in 2D Network-on-Chip (2D
NoC), giving access to all of the configuration/status registers, all external memory IP locations, and all internal
network access points (NAPs) of the 2D NoC. In this 42-bit linear space, each interface subsystem can be
addressed as a hierarchy of addresses, sub-divided as follows:

® Space — major different memory areas such as CSR_SPACE (interface subsystem registers), NAP_SPACE
(NAPs in the programmable fabric) and DDR4_ SPACE, GDDR6_ SPACE (external memories).

® Target — either interface subsystem IP blocks normally within the CSR_SPACE, e.g., PCl E_0, PCI E_1,
ETHERNET _O, etc., or individual external memory controllers, e.g., GDDR6_0, GDDR6_1, etc.

¢ [P ID — within an interface subsystem, individual blocks. So, for example, with Ethernet, the CORE
registers, then SERDES_0 and SERDES 1 register areas.

® Address — the memory address.

The overall size within each of these areas varies. However, the two most common to be accessed by external
software are CSR_SPACE and NAP_SPACE. They have the following addressing:

Preliminary Data 27

Software Development Kit User Guide (UG107)

Table 1: CSR_SPACE Addressing

Name Space Target IP_ID Register Address

CSR _SPACE |Bits [41:34] |Bits [33:28] | Bits [27:24] | Bits [23:0]

Table 2: NAP_SPACE Addressing

Name Space NAP Column NAP Row Register Address
NAP_sPACE(") @) Bits [41:35] Bits [34:31] Bits [30:28] Bits [27:0]
Table Notes

1. The NAPs are numbered from 1 for placement constraints within the device. However, they are
addressed from 0 in the above addressing table.

2. The SDK function uti | _cal c_nap_absol ut e_addr ess() returns bits [41:28] of the device address
when given the NAP column and row locations (humbered from 1).

The 2D NoC and its address mappings are described in much greater detail in the Speedster7t Network on Chip
User Guide (UG089).

Each physical function in the PCle controller on the Speedster7t FPGA contains six 32-bit (or three 64-bit) BAR
registers, each of which supports up to a 64MB address space. Because the Speedster7t FPGA 2D Network-on-
Chip (2D NoC) exposes a much larger 42-bit address space, it should be clear that the entire device address
space cannot be mapped into the host in its entirety using a static BAR mapping. It is therefore necessary to be
aware of those size limitations when designing applications, and to configure the BARs and their sizes to match
those requirements.

The size of each BAR, and FPGA base address(es) assigned to each BAR, are defined for each physical
function in the PCle IP configuration menu in the ACE 1/O designer, and stored in a hardware controller called
the address translation unit (ATU). Refer to the Speedster7t PCle User Guide (UG098), available under NDA, for
more information about configuring ATU BAR mappings in the bitstream (see the knowledge base article, How
do | gain Access to Confidential Documents?). However, the ATU configuration can also be modified by
applications at runtime using functions in the SDK, providing one mechanism to overcome the mismatch between
the maximum BAR sizes, and the size of the FPGA address space. The function and capabilities of the ATU are
described in more detail in the section, Address Translation Unit (see page 31).

It is important to emphasize that BAR register configuration is specific to a design. The capabilities of a user
application must match the BAR register sizes and device address assignments in the design. When mapping a
BAR to a CSR register space, or the address of a NAP for example, the design and user application must agree
on those BAR sizes and address mappings.

Warning!

The BAR register configurations are specific to a design. The user application must be written such that
it aligns with those configurations.

Preliminary Data 28

https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://www.achronix.com/documentation/speedster7t-network-chip-user-guide-ug089
https://support.achronix.com/hc/en-us/articles/4405039082132-How-Do-I-Gain-Access-to-Confidential-Documents-
https://support.achronix.com/hc/en-us/articles/4405039082132-How-Do-I-Gain-Access-to-Confidential-Documents-

Software Development Kit User Guide (UG107)

Another method to overcome the mismatch between the maximum BAR sizes, and the size of the FPGA 42-bit
address space, as well as to achieve much higher bandwidth, direct memory access (DMA) can be used instead
of memory-mapped BAR reads and writes. Refer to the DMA Transfers (see page 33) section for more
information about DMA.

Note

@ DMA accesses do not use BAR registers for the transfers. DMA transfers occur directly between the
device addresses and the physical address within the host. BAR registers are used, however, for
control and monitoring of the DMA transfers.

PCle Configuration Example

To understand the requirement for alignment between the BAR assignments and ATU mappings in a design, and
the implementation of applications written to run on that design, the demonstration design

pci e_gddr 6_ddr4_vp_deno is used as an example. That design demonstrates PCle DMA to and from
external memory, (DDR4 and GDDRG6), and also to a NAP in the fabric, using the DVA_exanpl e application
provided within the Achronix SDK.

Example BAR Configuration

PCle IP configurations, including the BAR assignments, are specified in the ACE 1/0 designer as well. The I/O
designer is accessed from the IP configuration perspective in the ACE GUI. The PCle configuration parameters
are written by the I/O designer into the design file / sr c/ acxi p/ pci e_express_x16. acxi p, which must be
included in the ACE project specification. The BARs for this demonstration design are configured in the I/O
designer as shown in the following table.

Table 3: Example BAR Mappings

BAR | Type | Size (Bytes) | 42-Bit 2D NoC Address FPGA memory space

0 Memory | 64M 0x042_4000_0000 NAP located in column 5, row 5.

1 Memory | 1M 0x043_e000_0000 NAP located in column 8, row 7.

2 Interrupt | 1M 0x000_0000_0000 Used by PCle core for MSI-X interrupts.
3 Memory | 1M 0x081_9100_0000 Base of CSR_SPACEPCI E_1BASE | P.
4 Memory | 1M 0x002_0000_0000 GDDRG6 controller 0, channel 1.

5 Memory | 1M 0x100_0000_0000 Base of DDR4 memory.

The two mandatory BAR mappings in this design are BAR 0 and BAR 3.

BAR 0 maps to a NAP located in column 5, row 5. Referencing the file / src/ constrai nts

/ ace_pl acenent s. pdc, this NAP connects to a fabric-based register control block macro. This block provides
status and control signals from/to the design, operating the DDR4 training transactions, and monitoring the
GDDRG training status among other functions.

Preliminary Data 29

Software Development Kit User Guide (UG107)

Excer pt From ace_pl acenents. pdc

Regi ster control block NAP placed in 5,5
set _placement -fixed {i:i_reg_control _block.i_axi_naster.i_axi_master} {s:x_core.NOJ5][5].]ogic.

noc. nap_nt

BAR 1 maps to a NAP located in column 8, row 7. This NAP is connected to a BRAM responder macro, which
makes a BRAM directly available to the host over PCle and the 2D NoC.

BAR 2 provides access to the MSI-X vector tables and pending bits. It is used by the MSI X_exanpl e
application.

BAR 3 is mapped to the control and status register (CSR) space within the PCle core. This mapping is required
to allow the software to access the registers that configure and control the DMA transfers. Without this mapping,
the application would not be able to perform DMA.

Note

T It is strongly recommended that all designs have one BAR mapped to the PCle config status register
(CSR) space (address 0x081_9100_0000). A CSR BAR is required in the application to access any
DMA or PCle core functions.

BAR 4 and BAR 5 map the the base of the GDDR6 and DDR4 off-chip memory arrays, respectively.

Example Software Implementation

Referencing the DVA_exanpl e in / deno/ sw exanpl es/ DVA_exanpl e/ DVA_exanpl e. cpp, it can be seen
how BAR 0 and BAR 3 are used to access the register control block and the PCle CSR registers, respectively.

Excer pt From DVA_exanpl e. cpp

/1 Configure mapping for each BAR
/1 1 MPORTANT - These can change on a per-design basis.
ACX_BAR handl e* reg_ctrl _bar = device.get_bar_handl e(0); // Mapped to the register control block

inthe fabric
ACX_BAR handl e* csr_bar = devi ce.get _bar_handl e(3); // Mapped to the Control Status

Regi sters

// DDR4 training is controlled and nonitored by the reg_ctrl block, which is
/| accessed by one of the BARs
if (acx::ddr4_run_training(device, reg_ctrl_bar, /*train_override*/ false, /*verbose*/ true) !=

0) {

/1 Initialize the DVA core. Resets both engines (read and wite) and sets arbitration weights.

Only need to do this once.
acx::dme_init(device, csr_bar, part, pcie_core);

Preliminary Data

30

Software Development Kit User Guide (UG107)

Implementation Recommendations
To ensure alignment between the device and the software, the following is recommended:

¢ Assign a BAR to the PCle config status registers (offset 0x081_9100_0000). Use this BAR for all PCle
CSR accesses in the software.

® [f the design contains a register control block with a NAP, define a BAR with an address that matches the
placement location of that NAP (defined in the ace_pl acenment s. pdc file). Use this BAR in the software
for all accesses to registers in the register control block.

* DMA transfers do not use BARs. To obtain the device address of a NAP for DMA access, call acx: :
util _cal c_nap_absol ut e_address().For GDDR6 or DDR4 device addresses use the
<t ar get >_SPACE define from /i ncl ude/ Achr oni x_SDK. h, and add in the required memory offset.

® To perform memory-mapped reads and writes to device registers or memories without using DMA
(sometimes called BAR reads and writes), define a BAR with a base address and size that covers the
region of memory to be accessed. For example, refer to BAR 1, 4, and 5 defined in the Example BAR
Mappings (see page 29) table. They map to a BRAM, GDDRG6, and DDR4 memories, respectively.

Address Translation Unit (ATU)

Mappings between the host 64-bit physical address space, and the 42-bit device address space, are performed
by the address translation unit (ATU), which is a part of the PCle interface subsystem. When a user application
reads from or writes to a physical address that has been assigned by the host OS to one of the device BARs,
that raw address is passed to the ATU for translation from a host address to the device 2D NoC address. If the
ATU were to be unconfigured, the host addresses would be truncated or zero-padded to 42-bits (depending on
whether the design uses 64-bit or 32-bit BARs), and then passed directly on into the 2D NoC without translation.
This could create an invalid address which could then cause 2D NoC access failures. Therefore, the ATU must
be configured, using the ACE /O designer, whenever a PCle block is configured to include one or more BARs.

The ATU consists of 100 regions, each of which can be individually configured with a mapping between one
contiguous region of host memory addresses, and a corresponding region of addresses (of the same size) on the
device.

Warning!

If ATU regions are defined to be overlapping (either in the device code or the host side), the behavior is
undefined.

Each ATU region can be in one of two modes, BAR match mode or address match mode, as illustrated in the
following diagrams.

Preliminary Data 31

Software Development Kit User Guide (UG107)

Host Memory (64 bits)
2D NoC (42 bits)

Lo BAR
Limit -~ ATU

~. Region -7
N .

Base — - Target

BAR Match Mode

Host Memory (64 bits)

2D NoC (42 bits)
ATU
Regions __ Target 2 + (Limit 2 - Base 2)
A
imi BAR 4
Limit 2 T o ﬂ - Target 2
El?’\'smii -] ,/'n‘*- Target 1 + (Limit 1- Base 1)
Basel - Moo _
Limit 0 - L o Target 1
Base 0 - . n . Target 0 + (Limit O - Base 0)
\\
N -~
iy Target 0

Address Match Mode

113824702-02.2023.04.17

Figure 3: ATU Region Examples

BAR Match Mode

In BAR match mode, the ATU translates all of the addresses covered by one BAR (either 32-bit or 64-bit BARS)
into a single block of device memory of the same size. Therefore, since each PCle physical function contains
only six 32-bit BARs, and since the PCle controller supports up to four physical functions, a maximum of 24 ATU
regions can be configured in BAR match mode. In this mode, only the device-side target address for the BAR
must be specified, as the host-side base and limit addresses are assigned by the host operating system during
enumeration.

Address Match Mode

Address match mode supports the full 100 ATU regions. Each region specifies base addresses in host memory
and in device memory along with a region size. This scheme allows the addresses covered by a single BAR to
be split up into a large number of individual slices that each map to any region of the 42-bit 2D NoC address
space. For example, a single BAR could be made to cover 80 different BRAMSs, each connected to its own NAP
in the Speedster7t FPGA 2D NoC. It is necessary to ensure that the regions are non-overlapping.

Preliminary Data 32

Software Development Kit User Guide (UG107)

MSI-X Interrupts

A device can generate interrupts on the host over PCle using a mechanism called message signaled interrupts-
extended (MSI-X). Using the ACE IP designer tool, a device can be configured with up to eight independent
interrupt vectors. After the device signals an interrupt, the host kernel executes an interrupt handler, which can
then trigger application code to service the interrupt. Interrupts can be masked, either asserting a global per-
function mask, or an individual per-vector mask. If an interrupt is triggered while masked, the PCle device asserts
a pending bit, and defers the interrupt until the mask bit is de-asserted, at which point the PCle device also de-
asserts the corresponding pending bit.

The Achronix SDK provides an API for MSI-X interrupts. Various aspects of the MSI-X register context, including
the pending bits, can be read and/or printed to the console. An interrupt can be triggered from the host for testing
and debug purposes. The function and vector mask flags can be asserted and de-asserted. Finally, a function
nmei x_wait_for_interrupt() can be called that returns when an interrupt has been received by the host.

DMA Transfers

Direct memory access (DMA) transfers do not require the use of BAR registers (other than for configuring the
DMA engine itself), and are therefore not limited by the number of BARs or the BAR sizes. The DMA engine built
into the PCle controller can efficiently transfer blocks of data of any size directly between the host remote 64-bit
address space and the local device 42-bit address space. The terms "local" and "remote" are from the
perspective of the on-device DMA controller. Because that perspective can be confusing, transfers are referred
to as host-to-device (H2D) or device-to-host (D2H) transfers, rather than reads and writes.

To perform a DMA transfer, the software must allocate a buffer on the host to source or receive the data, then
configure DMA controller registers with the source and destination addresses and the number of bytes. When
reading or writing the buffer from software, the buffer must be referred to using its virtual address. However,
when programming the DMA controller with the host buffer source or destination address, the buffer physical
address must be used. The acxsdk: : DnaHost Buf f er object makes it convenient to obtain both the virtual and
physical addresses for the buffer.

Note

It is not necessary to have a BAR register map the memory location in the device for a DMA transfer.

2D NoC Physical Address Calculations

To obtain the 42-bit 2D NoC device physical address for a DMA transfer, the following methods are available:

® For a NAP in the fabric, call acx: : uti| _cal ¢c_nap_absol ut e_addr ess() with the NAP row and
column index

®* For DDR4, use the define DDR4_SPACE to provide the base address, and add any necessary offset
® For GDDRS, use the define GDDR6_ SPACE to provide the base address and add any necessary offset

Note
Each of the 16 GDDR6 channels is addressed with addr [36: 33] .

Preliminary Data 33

Software Development Kit User Guide (UG107)

The following DMA example shows the use of these functions and defines for determining the device physical
(local) address for a DMA transfer:

DVA Exanpl e

/] Calculate the DVA target address in the device
ui nt64_t devi ce_phys_base_addr = 0xO;
if (options.endpoint == acx::DDR4) {
devi ce_phys_base_addr = DDR4_SPACE
} else if (options.endpoint == acx:: GDDR6) ({
devi ce_phys_base_addr = GDDR6_SPACE;
} else if (options.endpoint == acx::NAP) {
/1 AXI BRAM responder NAP |ocation is set in project pdc file
devi ce_phys_base_addr = util _cal c_nap_absol ute_addr(part, axi_bramresp_col,

axi _bramresp_row);

}

Basic DMA Operation

In order to perform a DMA transfer, the software must first open and obtain a handle to the PCle device. The
Achronix SDK provides a C++ class named acxsdk: : PCl Devi ce. The device is opened by calling the class
constructor with the PCle devi ce_i d. By default, devi ce_i d equals zero if there is only a single VectorPath
card installed. In the event that multiple VectorPath cards are installed, the devi ce_i d is 0, 1, 2, etc., in the
order that the devices were probed by the kernel. After the device is opened, the PCl Devi ce class is used as
the device handle. The device is automatically closed in the class destructor when it goes out of scope or the
application exits.

For DMA, the software is required to allocate a host buffer and, if performing a host-to-device DMA, copy the
required data into the host buffer. The Achronix SDK utilizes the acx_dnma_nal | oc() function to allocate that
buffer, through a C++ class named acxsdk: : DMAHost Buf f er . The buffer is created by calling the class
constructor with a pointer to the PCl Devi ce and the size of the buffer in bytes. The buffer is automatically
deallocated when the DVAHost Buf f er object goes out of scope, or when the application exits.

Note

©@ Maximum buffer size is currently limited to 4MB and the device-side starting address must be 4-byte
aligned.

Warning!

It is not possible to allocate the buffer with a simple nal | oc() call. The reason being the
DMAHost Buf f er: : get _phys_addr () function is required to obtain the buffer physical (not virtual)
address.

The following example illustrates using the PCl Devi ce and DMAHost Buf f er constructors. The function
buffer.fill _random() is used to fill the buffer with random data. The source for fi | | _random() is
contained within / sr ¢/ Achr oni x_PCI . cpp. This function can serve as an example how to fill the buffer with
application-specific data using the buffer virtual address. The source code for PCl Devi ce and DMAHost Buf f er
are also both available in the / src/ Achr oni x_PCl . cpp file. They can be customized as required.

Preliminary Data 34

Software Development Kit User Guide (UG107)

acxsdk: : PCl Devi ce devi ce(options. device_id);
acxsdk: : DMAHost Buf f er buf f er (&devi ce, buffer_size_in_bytes);
buffer.fill_random();

1. Having opened the PCle device and writing the required data into the DMAHost Buf f er , the software
must call acxsdk: : dma_i ni t () to initialize the DMA controller. This initialization only needs to be called
once at the start of the application as long as only a single process is using the DMA engine. The function
requires the following:

® The ACX PCI E_dev_handl e pointer obtained by calling acxsdk: : DMAHost Buf f er : :
get _devi ce()

® The ACX BAR handl e object for a BAR that maps to the PCle CSR memory area in the FPGA,
giving access to the DBl and PCle core control registers

® Defines for the desired Achronix part name and PCle controller number

acxsdk: :dma_init(devi ce.get_device(), csr_bar, acxsdk::AC7t 1500, acxsdk::PCIE_1);

2. For each individual DMA transaction, an instance of a acxsdk: : DraConmand struct must be populated
with parameters that describe the transaction. The most important parameters are:

® The transfer direction

® The 42-bit devi ce_addr ess (calculated in the previous code example)
® The 64-bit host _addr ess, obtained by calling DMAHost Buf f er: : get _phys_addr ()
® The buffer size in bytes, obtained from the DMAHost Buf f er class

acxsdk: : DmaConmand nyDmaComrand;

my DmaCommand.
nmy DmaConmand.
my DraComrand.
my DmaComand.
my DmaConmmand.
ny DmaConmand.
my DmaComrand.
my DmaConmmand.

csr_bar

pci e_core
dma_di rection
dme_channel
devi ce_addr ess

csr_bar;

acxsdk: : PCI E_1;

acxsdk: : HOST_TO _DeVI CE;
options. channel ;

devi ce_phys_base_addr;

host _addr ess buf f er - >get _phys_addr () ;
size_in_bytes buf fer->get _size_in_bytes();
descriptor_list_address = 0xO0;

3. For each transfer, the DMA engine is configured with acxdsk: : dma_confi g(), then the transfer started
with acxsdk: : dma_start ().

Preliminary Data 35

Software Development Kit User Guide (UG107)

4. To wait for a DMA to complete, call the function acxsdk: : dnma_wai t () . This function returns after the
DMA has completed. In the event that the DMA transaction does not complete correctly, or times-out, the
function acxsdk: : dma_hal t () must be called to abort the transaction before starting a new DMA
transfer.

acxsdk: : dma_confi g(device. get_device(), nyDmaConmand);
acxsdk: : dma_start (devi ce. get _devi ce(), nyDmaConmand);
acxsdk: : DSt at us status = acxsdk::dma_wait (devi ce. get _devi ce(), nmyDmaConmand,
/*timeout _i n_seconds*/ 2);
if (status == acxsdk:: DMA_RUNNI NG {
acxsdk: : dma_hal t (devi ce. get _devi ce(), myDmaConmand);
/1 code to recover and re-issue the conmand

Linked List Mode

In addition to the basic DMA operation just described, the more advanced linked list mode is available to handle
larger DMA transfers, or for implementing more efficient streaming applications. In this mode, the DMA context
(source address, target address, buffer size) is loaded into a data structure called a DMA descriptor, instead of
being passed directly to dnma_confi g() through the DmaCommand struct. Multiple buffers can be transferred in a
single call to dna_st art () by creating a descriptor for each buffer, and then combining the descriptors into a
linked list. The descriptor list is then transferred into device memory, and the physical address of the list is
passed into the dma_confi g() call through the DraComand struct. The descriptor list may be placed
anywhere in device memory (DDR4, GDDRG6, or a BRAM connected to a NAP). The descriptor list may be
transferred into device memory using individual BAR writes, or (recommended) a small DMA transaction.

To aid in constructing a DMA descriptor list, the Achronix SDK provides a small class named acxsdk: :
DVADescr i pt or Li st . After creating the DMADescr i pt or Li st , the descriptor data is populated by calling the
acxsdk: : buil d_data_descri ptor () function once for each DMAHost Buf f er . In the following example, an
array of host buffers, all of the same size have been allocated. The source code for the DMADescr i pt or Li st
class is available in / src/ Achr oni x_PCl . cpp and can be customized if required to suit the application.

acxsdk: : DMADescri ptor Li st descri ptors(&devi ce, options. numdescriptors, GDDR6_SPACE);
for (uint64_t i = 0; i < options.numdescriptors; i++) {
acxsdk: : dma_bui | d_dat a_descri ptor(descriptors[i],
options. buffer_size_in_bytes,
buf fer_vec[i]->get_phys_addr (),
devi ce_phys_base_addr + (options.buffer_size_in_bytes * (uint64_t)i));

Every block of descriptors in a DMADescr i pt or Li st consists of one or more DVADat aDescr i pt or s and ends
with a single DMALI nkDescr i pt or that might link to another DMADescr i pt or Li st . The use of multiple linked
DMADescr i pt or Li st s is beyond the scope of this document. The DMADescr i pt or Li st constructor
populates the terminating DMALi nkDescr i pt or with a pointer back to the first DMADat aDescr i pt or in the list,
which is the default configuration for a single unlinked descriptor list.

Note
The function dma_bui | d_I i nk_descri pt or () is available to populate the DMALi nkDescr i pt or.

Preliminary Data 36

Software Development Kit User Guide (UG107)

1. After building the DMADescr i pt or Li st , the list must be transferred into device memory, which can be
performed using the Basic DMA Operation (see page 34) procedure. For convenience, the
DMADescr i pt or C ass makes available the get _devi ce_phys_addr () function which returns an
address that is then passed to the class constructor. In the previous example, the physical address of
token GDDR6_ SPACE is used. This address equates to the lowest of GDDR6 memory addresses in the 42-
bit 2D NoC address space. For more information, see the DMA_exanpl e source code.

2. After the descriptor list is complete, the DnaCommand structure is populated with the DMA transfer
parameters. Comparing the following linked list mode example with the previous Basic DMA Operation
(see page 34) example, it can been seen that the physical address of the descriptor list in device
memory is used in place of the devi ce_addr ess, host _addr ess, and si ze_i n_byt es elements.

acxsdk: : DmaCommand nyDmaConmrand;

nmy DmaConmaind.
nmy DmaCommrand.
my DmaCommrand.
nmy DmaConmmrand.
ny DmaConmand.
my DmaComrand.
nmy DmaConmrand.
ny DmaConmand.
my DmaCommrand.

csr_bar

pci e_core
drme_direction
dma_channel
verbosity

csr_bar;

pci e_core;

acxsdk: : HOST_TO DEVI CE;
options. channel ;
options. verbosity;

devi ce_address 0x0;
host _address 0x0;
size_i n_bytes 0x0;

descriptor_list_address = descriptors->get_devi ce_phys_addr();

1. To initiate, start and wait the the DMA, the same commands, dma_confi g(),dma_start (), and
drme_wai t (), are used. The DMA controller performs all of the transfers specified in the descriptor list
before returning from the dma_wai t () function.

Warning!

DMA descriptor lists must be uploaded to the device and must exist in device memory during the
DMA transfer. Care should be taken to prevent the DMA descriptor list and DMA buffer target
device addresses from overlapping. If addresses do overlap, undefined behavior results during
the transfer.

Preliminary Data 37

Software Development Kit User Guide (UG107)

Chapter - 7: Design Requirements

This section documents the minimum requirements for designs that use various components of the SDK. See the
referenced demo design for more information and an example of the following.

Achronix_DDR4.cpp

The DDR4 functions manage training of the DDR4 controller (using the ddr 4_t r ai ni ng_pol I i ng_bl ock in
the fabric) and, in addition, control sending and reception of data along with performance monitoring of the
throughput to and from the DDR4 (using the axi _pkt _gen, axi _pkt _chk and axi _per f or mance_noni t or
blocks in the fabric). In order to use these functions, the fabric must contain the preceding instances. The header
file /i ncl ude/ Achr oni x_DDRA4. h specifies the register control block addresses for the various DDR4 control
blocks. These addresses should be modified to match the fabric design.

Achronix_GDDRG6.cpp

The GDDRE6 functions read the status of the Achronix device manager (ADM) that is configured to perform
GDDRE training. In order to use these functions, the fabric must contain an instance of the ADM configured to
train at least one GDDR®6 controller. The header file, / i ncl ude/ Achr oni x_GDDR6. h, specifies the register
control block addresses for the ADM. These addresses should be modified to match the fabric design.

Achronix_PCl.cpp

The PCle functions require at least one PCle core to be enabled and configured within the device. Normally (on a
VectorPath card) this is PCl E_1 which connects to the primarily PCle connector. In addition, the functions
require one BAR that maps to the PCle core registers. If DMA transfers are required to GDDR6 or DDR4, the
appropriate training blocks for these interfaces must be instantiated within the fabric and suitable control must be
available to ensure that the interfaces are correctly initialized and ready for read and write operations before any
DMA or PCle BAR access is made. See the previous functions for control and monitoring of these external
memories.

If DMA descriptors are required to be stored in a BRAM attached to a NAP, for internal fast storage, an
axi _bram responder instance is required in the fabric.

DMA_example.cpp

The DMA example code has the same requirements as Achr oni x_PCl . cpp in that a single core must be
present and configured, and that any external memory interfaces have been correctly initialized before use.

Preliminary Data 38

Software Development Kit User Guide (UG107)

Chapter - 8: SDK Functions

The SDK library includes the following functions. Function prototypes are defined in <achr oni x_SDK>/ i ncl ude

/ Achroni x_PCl . h.

Quick Reference Table

A list of all current functions, with their arguments follows.

// General utility functions

uint64_t util_cal c_nap_absol ute_addr (PartNanme part, int col, i
voi d util _wait_m croseconds (int numm croseconds);
voi d util _wait_seconds (int num seconds);

/] PCle CSR register access functions

int pci _reg_wite_offset (ACX_PCl E_dev_handl e *devi
uint32_t addr_offset, uint32_t value);

uint32_t pci_reg_read_of f set (ACX_PCl E_dev_handl e *devi
uint32_t addr_offset);

int pci _reg_set_bits_of fset (ACX_PCl E_dev_handl e *devi
uint32_t addr_offset, int start_bit, int stop_bit);

int pci _reg_cl ear_bits_offset (ACX_PCl E_dev_handl e *devi
uint32_t addr_offset, int start_bit, int stop_bit);

/1 PCl specific functions

voi d pci _read_reg_ctrl _version (ACX_PCl E_dev_handl e *devi
bool pci _link_is_up (ACX_PCl E_dev_handl e *devi
/1 DMA specific functions

voi d dmea_bui | d_data_descriptor (DMADat aDescri ptor *desc,

uint64_t dar);

voi d dma_bui | d_I i nk_descriptor (DMALIi nkDescri ptor *desc,
int dma_init (ACX_PCl E_dev_handl e *devi
Part Name part, PCl eCoreNum core);

voi d dma_config (ACX_PCl E_dev_handl e *devi
voi d dme_start (ACX_PCl E_dev_handl e *devi
voi d drme_hal t (ACX_PCl E_dev_handl e *devi
DmaSt at us dnma_get _st at us (ACX_PCl E_dev_handl e *devi
DmaSt at us dna_wai t (ACX_PCl E_dev_handl e *devi
ti meout _i n_seconds);

/] ATU specific functions

voi d at u_get _cont ext (ACX_PCl E_dev_handl e *devi
PCl eCor eNum pci e_core, ATUCont ext &context);

voi d atu_find_regions (ACX_PCl E_dev_handl e *devi

voi d at u_get _region
PCl eCor eNum pci e_core, int region_num ATURegi on ®ion);
voi d atu_put _region
PCl eCor eNum pci e_core, ATURegi on ®ion);

nt row);

ce,

ce,

ce,

ce,

ce,
ce);

uint32_t size,

ACX_BAR handl e *csr_bar,

ACX_BAR handl e *csr_bar,

ACX_BAR handl e *csr_bar,

ACX_BAR _handl e *csr_bar,

ACX_BAR handl e *reg_ctrl _bar);

uint64_t sar,

uint64_t ptr_phys_addr);
ACX_BAR handl e *csr_bar,

ce,

ce,
ce,
ce,
ce,
ce,

ce,

ce,

(ACX_PCl E_dev_handl e *devi ce,

(ACX_PCl E_dev_handl e *devi ce,

DmaConmand_t
DrmaConmand_t
DmaConmand_t
DmaConmand_t
DmaConmand_t

&p_dma_inst);
& _dma_inst);
& _dma_inst);
& _dma_inst);
&comand, int

ACX_BAR handl e *csr_bar,

ACX_BAR handl e *csr_bar,
PCl eCor eNum pci e_core, int bar_num std::vector<ATURegi on> ®i ons);
ACX_BAR_handl e *csr_bar,

ACX_BAR _handl e *csr_bar,

Preliminary Data

39

Software Development Kit User Guide (UG107)

util_calc_nap_absolute_addr()

Description

Calculate the full device 42-bit address of a NAP, placed in the 2D NoC, given the row and column coordinates.
This function is primarily intended for use when a DMA transfer is required between a NAP and a host using the
device address. The source code for this function is available in / sr ¢/ Achr oni x_PCI . cpp.

Call

uint64_t util_cal c_nap_absol ute_addr (PartNanme part, int col, int row;

Arguments
Table 4: Utility Calculate NAP Absolute Address Function Arguments

Type Argument Description

Par t nane part Device partname. Supported values are AC7t 1500ESO.

i nt col Column address. Column values start from 1 (not 0).

i nt row Row address. Row values start from 1 (not 0).

Return Value
Returns the absolute 2D NoC 42-bit address of the NAP.

Preliminary Data

40

Software Development Kit User Guide (UG107)

util_wait_microseconds()

Description

Non-blocking function to sleep for a defined number of microseconds (uS). The source code for this function is
available in / sr ¢/ Achr oni x_PCI . cpp.

Call

void util_wait_mcroseconds (int num.m croseconds);

Arguments

Table 5: Utility Wait Microseconds Function Arguments

Type Argument Description

i nt num_m cr oseconds Number of microseconds to sleep.

Return Value

The function does not have a return value.

Preliminary Data

41

Software Development Kit User Guide (UG107)

util_wait_seconds()
Description

Non-blocking function to sleep for a defined number of seconds. The source code for this function is available in
/ src/ Achroni x_PCl . cpp.

Call

void util_wait_seconds (int num seconds);

Arguments
Table 6: Utility Wait Seconds Function Arguments

Type Argument Description

i nt num seconds Number of seconds to sleep.

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

pci_reg_write_offset()

Description
Write to a register in the device, using a 32-bit offset to the required PCle BAR region.

Call

int pci_reg_wite_offset (ACX_PCl _dev_handl e *device, ACX BAR handl e *csr_bar, uint32_t
addr _offset, uint32_t value);

Arguments
Table 7: PCI Register Write Offset Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
PCle BAR that references the register location. This must be the
*

ACX_BAR handl e csr_bar BAR set to the configuration status registers in the PCle DBI space.

ui nt 32_t addr_of f set (1) | 32-bit offset to the BAR base address.

uint32_t val ue Value to be written to the register.

Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03f f _ffff.

Return Value

Returns a positive value indicating the number of 32-bit writes (1) if it completed successfully. Returns a negative

value if unsuccessful.

Preliminary Data

43

Software Development Kit User Guide (UG107)

pci_reg_read_offset()

Description
Write to a register in the device, using a 32-bit offset to the required PCle BAR region.

Call

uint32_t pci_reg_read_offset (ACX PCl_dev_handl e *devi ce, ACX BAR handl e *csr_bar, uint32_t
addr _offset);

Arguments
Table 8: PCI Register Read Offset Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
PCle BAR that references the register location. This must be the BAR
*
ACX_BAR handl e csr_bar set to the configuration status registers in the PCle DBI space.
ui nt 32_t addr _of f set | 32-bit offset to the BAR base address.
Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03f f _ffff.

Return Value

Returns the 32-bit value of the register.

Preliminary Data

Software Development Kit User Guide (UG107)

pci_reg_set_bits_offset()

Description

Set a range of bits in a register in the device to 1' b1, using a 32-bit offset to the required PCle BAR region. The
function performs a read-modify-write sequence on the register.

Call

int pci_reg_set_bits_offset (ACX_PCl_dev_handl e *device, ACX BAR handl e *csr_bar, uint32_t
addr_offset, int start_bit, int stop_bit);

Arguments
Table 9: PCI Register Set Bits Offset Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
PCle BAR that references the register location. This must be the
*
ACX_BAR handl e csr_bar BAR set to the configuration status registers in the PCle DBI space.
ui nt 32_t addr _of fset () | 32-bit offset to the BAR base address.
i nt start_bit Highest .b|t to be set. Must be in the range 0-31. Must be >=
stop_bit.
. . Lowest bit to be set. Must be in the range 0-31. Must be <=
i nt stop_bit :
stop_bit.
Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03f f _ffff.

Return Value

Returns a positive value indicating the number of 32-bit writes (1) if it completed successfully. Returns a negative
value if unsuccessful.

Preliminary Data 45

Software Development Kit User Guide (UG107)

pci_reg_clear_bits_offset()

Description

Clear a range of bits in a register in the device to 1' b0, using a 32-bit offset to the required PCle BAR region.
The function performs a read-modify-write sequence on the register.

Call

int pci_reg_clear_bits_offset (ACX_PCl_dev_handl e *device, ACX BAR handl e *csr_bar, uint32_t
addr_offset, int start_bit, int stop_bit);

Arguments
Table 10: PCI Register Clear Bits Offset Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
PCle BAR that references the register location. This must be the
*
ACX_BAR handl e csr_bar BAR set to the configuration status registers in the PCle DBI space.
ui nt 32_t addr _of fset () | 32-bit offset to the BAR base address.
. . Highest bit to be cleared. Must be in the range 0-31. Must be >=
i nt start_bit .
stop_bit.
. . Lowest bit to be cleared. Must be in the range 0-31. Must be <=
i nt stop_bit :
stop_bit.
Table Notes

1. Currently there is a restriction with the PCle BAR size to 64MB. Therefore, addr _of f set is limited to a
maximum value of Ox03f f _ffff.

Return Value

Returns a positive value indicating the number of 32-bit writes (1) if it completed successfully. Returns a negative

value if unsuccessful.

Preliminary Data

46

Software Development Kit User Guide (UG107)

pci_read_reg_ctrl_version()

Description

Utility function to display the values of the version registers within a register control block.

Call

int pci_read_reg_ctrl_version (ACX_PCl_dev_handl e *devi ce, ACX_BAR handle *reg_ctrl _bar);

Arguments
Table 11: PCI Read Register Control Version Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* devi ce Pointer to the PCle device.
ACX_BAR handl| e* reg_ctrl _bar PCle BAR that references the register control block.

Return Value

Returns 0.

Preliminary Data

Software Development Kit User Guide (UG107)

pci_link_is_up()

Description

Utility function to indicate if the PCle device is correctly enumerated and available for access. The function
ensures that the vendor ID register can be read via DBI over the CSR BAR.

Call

bool pci_link_is_up (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar);

Arguments

Table 12: PCI Link Is Up Function Arguments

Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX_BAR hand| e* csr_bar PCle BAR that references the register location. Must be the BAR set to the

configuration status registers in the PCle DBI space.

Return Value

Returns true if the PCle core responds correctly, or false if an error is detected.

Preliminary Data

48

Software Development Kit User Guide (UG107)

dma_build_data_descriptor()

Description

Populates a DMA data descriptor in a DMADescr i pt or Li st . Used for linked-list-mode DMA operation. The
source code for this function is available in <achr oni x_SDK>/ sr ¢/ Achr oni x_PCl . cpp.

Call
voi d dnma_buil d_dat a_descri ptor (DMADataDescriptor *desc, uint32_t size, uint64_t sar, uint64_t
dar);
Arguments
Table 13: DMA Build Data Descriptor Function Arguments
Type Argument Description
DMADat aDescri pt or * (1) (2) desc Pointer to the descriptor.
ui nt 32_t si ze Size of the transfer in bytes.
ui nt 64_t sar Source address (can be either host or device).
ui nt 64_t dar Destination address (can be either host or device).
Table Notes

1. The descriptor must already be defined (normally as part of a DMADescr i pt or Li st).

2. The direction of the DMA transfer is not defined in the descriptor. The direction is set by dma_confi g() .
It is therefore important that sar and dar are set correctly in every descriptor with respect to host and
device addresses to be consistent with the subsequent direction set by dme_confi g() .

Return Value

The function does not have a return value.

Preliminary Data

49

Software Development Kit User Guide (UG107)

dma_build_link_descriptor()

Description

Populates the DMA link descriptor that terminates each DMADescr i pt or Li st . Used for linked-list DMA
operation. The DVALiI nkDescr i pt or that terminates each DMADescr i pt or Li st is filled in by the
DMADescr i pt or Li st constructor to point back to the first descriptor in list list. This function is only needed
when building multiple linked sets of DMADescr i pt or Li st s. The source code for this function is available in

/ src/ Achroni x_PCl . cpp.

Call

voi d dma_buil d_link_descriptor (DMALIi nkDescriptor *desc, uint64_t ptr_phys_addr);

Arguments
Table 14: DMA Build Link Descriptor Function Arguments
Type Argument Description
DMVALi nkDescri pt or *(1(2) | desc Pointer to the descriptor.

Start address of the next block of link-list descriptors. If the start
of the current block of descriptors is used, this address acts as

ui nt 64_t ptr _phys_addr | an end-of-list for the current linked list, causing the DMA to
complete. Defined as the device physical address within the 42-
bit 2D NoC memory space.
Table Notes

1. The descriptor must have already been defined, normally as part of a DMADescr i pt or Li st .

2. The direction of the DMA transfer is not defined in the descriptor. The direction is set by dma_confi g() .
It is therefore important that sar and dar are set correctly in every descriptor with respect to host and
device addresses to be consistent with the subsequent direction set by dme_confi g() .

Return Value

The function does not have a return value.

Preliminary Data

50

Software Development Kit User Guide (UG107)

dma_init()

Description

Initializes the PCle DMA engine. Sets the arbitration weights for each of the four DMA channels to the same
value. Must be called at least once before any DMA transactions are initiated.

Warning!

Normally, this function should only be called once during program execution. Calling this during DMA
operation could cause the core to enter an unknown state.

Call

int dnma_init (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PartNane part, PCl eCoreNum

core);

Arguments

Table 15: DMA Initialize Function Arguments

Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX_BAR_handl e* csr_bar E;;Rcéhat references the configuration status registers in the PCle DBI
Par t Nane part Device partname. Currently the only supported option is AC7t 1500ESO.
PCl eCor eNum core Selects the appropriate PCle core. Options are PCl E_0 and PCI E_1.

Return Value

Returns 0.

Preliminary Data

51

Software Development Kit User Guide (UG107)

dma_config()

Description

Configure the PCle DMA for a transfer. The DmaConmraind structure passed to this function contains the source
and destination addresses, the size of the transfer and the direction. Alternately, if linked-lists are being used, the
structure includes the address of the start of the linked list in the device 42-bit 2D NoC address space.

Note

This function does not start a DMA transfer.

Call

void dma_config (ACX_PCl _dev_handl e *devi ce, DmaConmand &dme_conmand) ;

Arguments
Table 16: DMA Configure Function Arguments
Type Argument Description
ACX_PCI _dev_handl e* devi ce Pointer to the PCle device.
DmaComand& dme_comand Reference to a DMA command struct.

Return Value

The function does not have a return value.

Preliminary Data 52

Software Development Kit User Guide (UG107)

dma_start()

Description
Starts a DMA transfer previously configured with a call to dma_confi g() .

Call

void dma_start (ACX _PCl _dev_handl e *devi ce, DmaCommand &dnma_conmmand) ;

Arguments
Table 17: DMA Start Function Arguments

Type Argument Description

ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.

Reference to the DMA command struct. This command struct must have

DraCommandé dma_command been previously processed by dna_confi g() .

Return Value

The function does not have a return value.

Preliminary Data 53

Software Development Kit User Guide (UG107)

dma_halt()

Description

Halts the currently running PCle DMA transfers defined by the DMA command instance. Use this only if the DMA
transaction has timed out and needs to be aborted.

Call

void dnma_halt (ACX_PCl _dev_handl e *devi ce, DmaComand &dma_conmand);

Arguments

Table 18: DMA Halt Function Arguments

Type

Argument

Description

ACX_PCl _dev_handl e*

devi ce

Pointer to the PCle device.

DnmaComand&

dma_command

Reference to a DMA command.

Return Value

The function does not have a return value.

Preliminary Data

54

Software Development Kit User Guide (UG107)

dma_print_stats()

Description

Prints a histogram of the DBI write retry stats to stdout. The statistics values are cleared whenever dma_i ni t ()
is called.

Call

void dma_print_stats (void);
Arguments
The function takes no arguments.

Return Value

The function does not have a return value.

Preliminary Data 55

Software Development Kit User Guide (UG107)

dma_get_status()

Description
Get the status of the currently running PCle DMA defined by the DMA command structure.

Call

DmaSt at us dma_get _status (ACX_PCl _dev_handl e *devi ce, DmaCommand &dnma_command) ;

Arguments
Table 19: DMA Get Status Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* devi ce Pointer to the PCle device.
DmaComuand& dma_command Reference to a DMA command struct.

Return Value

Returns one of the values for DMAst at us defined in the DmaSt at us enum.

Preliminary Data

Software Development Kit User Guide (UG107)

dma_wait()

Description

Begins polling the status of a currently running DMA transfer, initiatied with dma_st art (), at a set interval, and
returns to the caller when the transfer is complete.

Note

This function is multi-threaded and non-blocking.

Call

DmaSt at us dma_wait (ACX _PCl _dev_handl e *devi ce, DmaConmand &dma_command, int tineout _in_seconds);

Arguments
Table 20: DMA Wait Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
DmaComand& dma_comrand Reference to a DMA command struct.

Maximum time to wait for DMA to complete. If
i nt timeout i n_seconds |tinmeout _in_seconds is exceeded, the function returns to
the calling function with an error return value.

Return Value

Returns one of the predefined values for DnaSt at us as defined in Acxr oni x_PCl . h. If the status is not
acxsdk: : DMA COVPLETE, then the transaction did not complete successfully. Call dnma_hal t () to force the
currently running transaction to end correctly.

Preliminary Data

57

Software Development Kit User Guide (UG107)

atu_get_context()

Description

Returns the complete context (configuration register values) of the address translation unit. Results are returned
in the ATUCont ext class, which is a vector of 100 ATURegi on classes. This function can be used to view the
current ATU configuration, and then modify it with the at u_put _r egi on() function.

Call

voi d atu_get _context (ACX_PCl_dev_handl e *devi ce, ACX _BAR handl e *csr_bar, PCl eCoreNum core,

ATUCont ext &context);

Arguments
Table 21: ATU Get Context Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- - - space.
PCl eCor eNum core Selects the appropriate PCle core. Options are PCl E_0 and PCI E_1.
ATUCoNt ext & cont ext A reference to an ATUCont ext class to be filled in with the current values

of all of the ATU configuration registers.

Return Value

The function does not have a return value.

Preliminary Data

58

Software Development Kit User Guide (UG107)

atu_find_regions()

Description

Finds all regions that cover a given BAR and returns their context in a vector of ATURegi on classes.

Call

void atu_find_regions (ACX_PCl _dev_handl e *devi ce, ACX _BAR handl e *csr_bar, PCl eCoreNum core, int
bar _num std::vect or <ATURegi on> ®i ons);

Arguments
Table 22: ATU Find Regions Function Arguments
Type Argument Description
ACX_PCI _dev_handl e* devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle
- - - DBl space.
PCl eCor eNum core Selects appropriate PCle core. Options are PCI E_ 0 and PCI E_1.
i nt bar _num Integer index (0-5) of the BAR number to be found.
std: : vect or <ATURegi on>& | egi ons Qarrefenrﬁr;fe to a vector of all ATURegi ons that cover BAR number

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

atu_get_region()

Description

Gets a given ATU region, and returns its context in an ATURegi on class.

Call

voi d atu_get _region (ACX _PCl _dev_handl e *devi ce, ACX _BAR handl e *csr_bar, PCl eCoreNum pcie_core,
int region_num ATURegi on ®ion);

Arguments
Table 23: ATU Get Region Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
PCl eCor eNum pci e_core | Selects the appropriate PCle core. Options are PCI E_0 and PClI E_1.
i nt regi on_num| The index (0-99) of the region to be returned.
ATURegi on& egi on A reference to an ATURegi on class to be filled in with the context of the

region specified by r egi on_num

Return Value

The function does not have a return value.

Preliminary Data

60

Software Development Kit User Guide (UG107)

atu_put_region()

Description

Modifies the ATU configuration registers of a given region using the context specified in a given ATURegi on

class.

Call

voi d atu_put _region (ACX _PCl _dev_handl e *devi ce, ACX _BAR handl e *csr_bar, PCl eCoreNum pcie_core,

ATURegi on ®i on);

Arguments
Table 24: ATU Put Region Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
PCl eCor eNum pci e_cor e | The index (0-99) of the region to be configured.
ATURegi on& r egi on A reference to an ATURegi on class. The context of the class is copied into

the configuration registers of the region specified by r egi on_num

Return Value

The function does not have a return value.

Preliminary Data

61

Software Development Kit User Guide (UG107)

msix_is_enabled()

Description

Queries the PCle device whether the MSI-X interripts are enabled or disabled
Call

bool nsix_is_enabl ed (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PCleCoreNum
pci e_core);

Arguments
Table 25: MSI-X Is Enabled Function Arguments

Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX_BAR hand| e* csr_bar BAR that references the configuration status registers in the PCle DBI
space.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCI E_0 and PCl E_1.

Return Value

Returns true if MSI-X interrupts are enabled, otherewise returns false.

Preliminary Data

62

Software Development Kit User Guide (UG107)

msix_get_table_size()

Description

Queries the PCle device for the number of entries in the MSI-X vector and PBA tables (the number of supported
interrupt vectors).

Call

int neix_get_table_size (ACX_PCl E dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PCl eCoreNum
pci e_core);

Arguments
Table 26: MSI-X Get Table Size Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCI E_0 and PCl E_1.

Return Value

Returns the integer number of entries in the MSI-X vector and PBA tables.

Preliminary Data 63

Software Development Kit User Guide (UG107)

msix_get_context()

Description

Queries the PCle device to read the values of all MSI-X configuraton registers, also called the MSI-X context.
Values of the configuration registers are returned in the M5l XCont ext class. This function is intended for low-
level debugging of hardware resources. It is not needed during ordinary application execution.

Call

voi d nsi x_get_context (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PCl eCoreNum
pci e_core, MSI XContext &context);

Arguments
Table 27: MSI-X Get Context Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCI E_0 and PCl E_1.
MBI XCont ext & cont ext On return, a structure holding all of the MSI-X configuration register

settings.

Return Value

The function does not have a return value. A structure containing all of the MSI-X configuration register values is

written to the context argument.

Preliminary Data

64

Software Development Kit User Guide (UG107)

msix_get_vector()

Description

Queries the PCle device to read the enumeration state associated with the interrupt vector at a given vector
index. The state includes the vector address, the message data, and the mask bit.

Call

voi d nsi x_get_vector (ACX_PClI E_dev_handl e *devi ce,
PCl eCor eNum pci e_cor e,

*nmsi x_bar,
int *mask_bit);

int index,

ACX_BAR _handl e *csr_bar, ACX_BAR handl e
uint64_t *nmessage_address, uint32_t *message_data,

Arguments
Table 28: MSI-X Get Vector Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* | devi ce Pointer to the PCle device.
ACX_BAR_hand! e* csr_bar BAR that references the configuration status registers in the PCle
DBI space.
ACX_BAR_handl| e* nmsi X_bar BAR that references the MSI-X vector table and pending bit array.
PCl eCor eNum pci e_core Selects the appropriate PCle core. Options are PCl E_0 and
PCIE_1.
i nt i ndex Index of the interrupt vector being queried.
uint64_t* nmessage_addr ess | On return, contains the 64-bit message address at the given index.
uint32_t* nmessage_dat a On return, contains the 32-bit message data at the given index.
int* mask_bi t On return, contains the 1-bit per-vector mask bit (asserted or de-

asserted).

Return Value

The function does not have a return value. See arguments for return data.

Preliminary Data

65

Software Development Kit User Guide (UG107)

msix_get_pending_bit()

Description

Queries the PCle device to read the pending bit associated with an interrupt vector at a given index.

Call

int msi x_get_pending_bit (ACX_PCl E dev_handl e *device, ACX BAR handl e *csr_bar, ACX_BAR handl e
*nmsi x_bar, PCleCoreNum pcie_core, int index, int *pending_bit);

Arguments
Table 29: MSI-X Get Pending Bit Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX_BAR hand| e* csr_bar SBpAaIz;hat references the configuration status registers in the PCle DBI
ACX_BAR _handlI e* nsi x_bar BAR that references the MSI-X vector table and pending bit array.
PCl eCor eNum pcie_core Selects the appropriate PCle core. Options are PCI E_0 and PCI E_1.
int i ndex Index of the interrupt vector being queried.
int* pendi ng_bi t ageriturn, contains the single pending bit for the vector at the given

Return Value

Returns the value of the pending bit for the interrupt at the given index.

Preliminary Data

Software Development Kit User Guide (UG107)

msix_set_function_mask()

Description

Sets the global per-function mask bit.

Call

voi d nsi x_set_function_nmask (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PCl eCoreNum
pci e_core, int value);

Arguments
Table 30: MSI-X Set Function Mask Function Arguments

Type Argument Description

ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.

BAR that references the configuration status registers in the PCle DBI

ACX_BAR_handl| e* csr_bar
space.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCI E_0 and PCI E_1.
. The 1-bit value to set for the global per-function interrupt mask (0 = de-
i nt val ue

asserted, 1 = asserted).

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

msix_set_vector_mask()

Description

Sets the per-vector interrupt mask bit for the vector at the given index.

Call

voi d nsi x_set_vector_nmask (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar, ACX_BAR handl e
*msi x_bar, PCl eCoreNum pcie_core, int index, int value);

Arguments
Table 31: MSI-X Set Vector Mask Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
ACX_BAR _handlI e* nsi x_bar | BAR that references the MSI-X vector table and pending bit array.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCl E_0 and PCl E_1.
i nt i ndex The index of the vector being set.
. The 1-bit value to set for the per-vector interrupt mask (0 = de-asserted, 1
i nt val ue
= asserted).

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

msix_print_vectors()

Description

Prints the state associated with all of the interrupt vectors to the console for debugging purposes. The per-vector
state includes the message address, the message data, and the mask bit.

Call

void nsix_print_vectors (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar, ACX_BAR handl e
*nmsi x_bar, PCl eCoreNum pci e_core);

Arguments
Table 32: MSI-X Print Vectors Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
ACX_BAR _handlI e* nsi x_bar BAR that references the MSI-X vector table and pending bit array.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCl E_0 and PCl E_1.

Return Value
The function does not have a return value.

Preliminary Data 69

Software Development Kit User Guide (UG107)

msix_print_pending_bits()

Description
Prints the interrupt Pending Bit Array (PBA) to the console for debugging purposes.

Call

voi d nsi x_print_pending_bits (ACX_PCl _dev_handl e *devi ce, ACX_BAR handl e *csr_bar, ACX_BAR handl e
*nmsi x_bar, PCl eCoreNum pci e_core);

Arguments
Table 33: MSI-X Print Pending Bits Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
ACX_BAR _handlI e* nsi x_bar BAR that references the MSI-X vector table and pending bit array.
PCl eCor eNum pci e_cor e | Selects the appropriate PCle core. Options are PCIE_0 and PCIE_1.

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

msix_interrupt()

Description

Triggers an interrupt using the vector at the given index. Interrupts are normally triggered from the hardware in

response to some asynchronous events, but this function allows interrupts to be triggered from the host software
for debugging and testing purposes.

Call

void nsix_interrupt (ACX_PCl_dev_handl e *devi ce, ACX_BAR handl e *csr_bar, PCl eCoreNum pci e_core,

int nessage_id);

Arguments
Table 34: MSI-X Interrupt Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
ACX BAR handl e* csr bar BAR that references the configuration status registers in the PCle DBI
- = - space.
PCl eCor eNum pci e_core | Selects the appropriate PCle core. Options are PCIE_0 and PCIE_1.
i nt nmessage_i d | The index of the interrupt vector being triggered.

Return Value

The function does not have a return value.

Preliminary Data

71

Software Development Kit User Guide (UG107)

msix_interrupt_wait()

Description

Waits for an interrupt to be triggered at the given interrupt vector index, and then returns to the caller.

Call

Msi xSt atus nsi x_interrupt_wait (ACX_PCl_dev_handl e *device, int nessage_id, unsigned int
timeout _ns, unsigned int *interrupt_count);

Arguments
Table 35: MSI-X Interrupt Wait Function Arguments
Type Argument Description
ACX_PClI _dev_handl e* | devi ce Pointer to the PCle device.
i nt nmessage_i d The index of the interrupt vector being queried.
) . . The number of milliseconds to wait for an interrupt to occur. A
unsi gned i nt timeout _mns e .
value of "0" indicates wait forever.
unsi gned i nt * i nterrupt_count A pointer to an unsigned integer to contain the number of interrupts

received by the driver since it was loaded.

Return Value

Returns one of the values for MSI-X status defined in the Msi xSt at us enum.

Preliminary Data 72

Software Development Kit User Guide (UG107)

msix_cancel_wait()

Description

Cancel a call to nsi x_i nterrupt _wai t () with the specifed nessage_i d in a different thread. This function
does not wait for the waiting thread to be finished with the nsi x_i nterrupt _wai t () function call.

Call

voi d nsi x_cancel _wait (ACX_PCl _dev_handl e *device, int message_id);

Arguments
Table 36: MSI-X Cancel Wait Function Arguments
Type Argument Description
ACX_PCl _dev_handl e* devi ce Pointer to the PCle device.
i nt message_i d | The index of the interrupt vector being queried.

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

Chapter - 9. SDK Structures

DmaCommand_t

Description

The DmaComrand_t structure is used to specify the parameters of a DMA transaction when calling
dma_config() and dma_st art (). The structure can be used in two modes: normal and linked-list. In normal
mode, all of the parameters are directly specified in the DraConmand, hence the devi ce_addr ess,

host address, and si ze_i n_byt es fields are populated and the descri ptor _|ist_address is set to
NULL. In linked-list mode those three parameters are read from the descriptors, so devi ce_addr ess,

host address, andsi ze i n_bytes are set to NULL and the descrptor _|i st _address elementis
populated. See the DMA example source code for more information.

Definition
struct DmaCommand_t {
ACX_BAR handl e* csr_bar;
PCl eCor eNum pcie_core;
Dmabi r drme_di rection;
int drme_channel ;
ui nt 64_t devi ce_addr ess;
ui nt 64_t host _addr ess;
ui nt 64_t si ze_i n_bytes;
ui nt 64_t descriptor_list_address;
bool verbosity;
b
Fields
Table 37: DmaCommand_t Structure Fields
Type Parameter Description
A handle to a BAR register mapped to the base of the CSR
*
ACX_BAR_handl e* | csr_bar space in the 42-bit 2D NoC address space.
An enum that specifies which PCle core is being
PCl eCor eNum pcie_core programmed. Normally, this is PCI E_1 which is the core
connected to the host PC.
. . . An enum describing the transfer direction. Either
Drabi r dma_direction HOST_TO DEVI CE (a read) or DEVI CE_TO_HOST (a write).
Specifies which of the DMA channels to program. The
i nt dma_channel Speedster7t FPGA has four independent full-duplex channels
(0=-3).

Preliminary Data 74

Software Development Kit User Guide (UG107)

Type Parameter Description
. . The 42-bit base address for the transfer on the device side

ui nt 64 _t devi ce_address
(normal mode only).
The 64-bit address for the transfer on the host side. This must

ui nt 64_t host _addr ess be the physical (not virtual) address of a DMA buffer (normal
mode only).

ui nt 64._t size_in_bytes The size of the transfer specified as the number of bytes
(normal mode only).

ui nt 64t descriptor_|ist_address The 42-bit base address of a DMA data descriptor (linked-list

mode only).

bool

verbosity

Setting this flag to a non-zero value increases the detail of the
output debug information.

Preliminary Data 75

Software Development Kit User Guide (UG107)

DMADataDescriptor

Description

This struct consists of six 32-bit parameters specifying the meta-parameters for a DMA transaction. The
parameters can be allocated in blocks of contiguous descriptors using the DMADescr i pt or Li st class
described in the following example.

Definition

struct DMADat aDescriptor {
uint32_t control;
uint32_t si ze;
uint 32_t sar_l ow;
uint32_t sar_high;
ui nt 32_t dar_I ow,
ui nt 32_t dar _high;

h
Fields
Table 38: DMADataDescriptor Structure Fields
Type Parameter Description
uint32_t |control §p3p2]—c2irt:§:élzl register. Only bits [4:0] are currently in use. See the file Achr oni x_PCl .
uint32_t |size The size of the transaction specified as the number of bytes.
uint32_t [sar_I ow The lower 32 bits of the DMA source address.
uint32_t | sar_hi gh | The upper 32 bits of the DMA source address.
uint32_t |[dar_I ow The lower 32 bits of the DMA destination address.
ui nt 32_t [dar_hi gh | The upper 32 bits of the DMA destination address.

Preliminary Data

76

Software Development Kit User Guide (UG107)

DMALinkDescriptor

Description

This struct consists of six 32-bit parameters used in DMA linked-list mode. When allocating a block of descriptors
using a DMADescr i pt or Li st class (described in the following example), the last descriptor in a contiguous
block must be a link descriptor. The pt r field in a link descriptor points to the first descriptor in a neighboring
descriptor list. The last link descriptor list in a linked-list should point back to the beginning of the first data

descriptor in the list. The DMVALI nkDescr i pt or struct is the same size as the DMADat aDescr i pt or , however
three of the 32-bit fields are unused.

Definition

struct DMALi nkDescriptor {

ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t

Fields

control;
unused_0;
ptr_| ow,
ptr_hi gh;
unused_1;
unused_2;

Table 39: DMALinkDescriptor Structure Fields

Type Parameter

Description

uint32_t [control

A 32-bit control register. Only bits [2:0] are currently in use. See the file Achr oni x_PCl .
cpp for usage.

ui nt 32_t [unused_0O

This field is not currently in use.

uint32_t [ptr_low

The lower 32 bits of the next DMADat aDescr i pt or in a linked-list chain.

uint32_t [ptr_high

The upper 32 bits of the next DMADat aDescr i pt or in a linked-list chain.

uint32_t [unused_1

This field is not currently in use.

ui nt 32_t [unused_2

This field is not currently in use.

Preliminary Data

77

Software Development Kit User Guide (UG107)

Chapter - 10: SDK Classes

The SDK library includes the following C++ classes. Classes are defined in the <achr oni x_SDK>/ i ncl ude
/ Achr oni x_PCl . h file.

PClDevice

Description

This is a convenience class consisting of a C++ wrapper around the low-level acx_pci e_devi ce_open()
function. When called, the class constructor attempts to open the PCle device with the specified devi ce_i d.
When the class destructor is called, the device is closed before the class is deallocated. The function

get _pci _status() is used to query whether the device was opened successfully.

Definition

cl ass PCl Devi ce {
public:
enum Devi ceStatus {
STATUS_CK,
STATUS_ERROR
h
public:
PCl Devi ce(int device_id);
~PCl Devi ce() ;
Devi ceStatus get _pci _status() { return _pci_status; }
int get_device_id() { return _device_id; }
ACX_PCl _dev_handl e *get _device() { return _device; }
ACX_BAR handl e *get_bar_handl e(uint32_t bar_id);
void print();
/1 PCl Reads
int read_ui nt8(ACX_BAR handl e *bar, uint64_t offset, uint8_t *buffer, int count);
int read_uint16(ACX_BAR handl e *bar, uint64_t offset, uintl6_t *buffer, int count);
int read_uint32(ACX_BAR handl e *bar, uint64_t offset, uint32_t *buffer, int count);
int read_uint64(ACX_BAR handl e *bar, uint64_t offset, uint64_t *buffer, int count);
/1 PCl Wites
int wite_uint8 ACX_BAR handle *bar, uint64_t offset, uint8_t *buffer, int count);
int wite_uintl1l6(ACX_BAR handle *bar, uint64_t offset, uintl6_t *buffer, int count);
int wite_uint32(ACX_BAR handle *bar, uint64_t offset, uint32_t *buffer, int count);
int wite_uint64(ACX_BAR handle *bar, uint64_t offset, uint64_t *buffer, int count);

Preliminary Data

78

Software Development Kit User Guide (UG107)

Member Functions
Table 40: PCIDevice Class Member Functions

Return Type Function Description
Constructor. Opens the PCI device specified by the devi ce_i d and
voi d PClI Devi ce retains a handle to the device obtainable with the get _devi ce()
function.
voi d ~PCl Devi ce Descructor. Closes the PCI device if open.

Devi ceSt at us

get _pci _status

Returns an enum value indicating if the device was opened
successfully.

int

get _device_id

Returns the devi ce_i d passed into the constructor.

ACX_PCI _dev_handl e*

get _devi ce

Returns a handle to the underlying PCle device object if opened
successfully.

ACX_BAR hand| e*

get _bar_handl e

Returns a handle to the underlying PCle base address register if the
device was opened successfully.

Displays metadata about the device on the console, including the

void print device and vendor ID strings and the BAR configurations.

i nt read_uint8 Read an 8-bit unsigned integer from the device through a BAR.
i nt read_ui nt 16 Read a 16-bit unsigned integer from the device through a BAR.
i nt read_ui nt 32 Read a 32-bit unsigned integer from the device through a BAR.
i nt read_ui nt 64 Read a 64-bit unsigned integer from the device through a BAR.
i nt wite_uint8 Write an 8-bit unsigned integer to the device through a BAR.

i nt wite_uintl6 Write a 16-bit unsigned integer to the device through a BAR.
int write_uint32 Write a 32-bit unsigned integer to the device through a BAR.

i nt write_uint64 Write a 64-bit unsigned integer to the device through a BAR.

Preliminary Data

79

Software Development Kit User Guide (UG107)

DMAHostBuffer

Description

A convenience class consisting of a C++ wrapper around the low-level acx_dma_nal | oc() function. When
called, the class constructor allocates a DMA buffer of the given size. When the class destructor is called, the
buffer is deallocated. The function, get st at us(), is used to query whether the buffer was allocated
successfully. The functions, get _phys_addr () and get _vi rt _addr (), are used to get the physical and
virtual addresses (respectively) of the buffer. Functions are provided to clear and fill the buffer with various data
patterns.

Definition

cl ass DVAHost Buffer {
public:
enum Buf fer Status {
STATUS (XK,
STATUS_ERROR
}
public:
DVAHost Buf f er (PCl Devi ce *device, uint64_t size_in_bytes);
~DVAHost Buf fer () ;
Buf fer Status get_status() { return _status; }
uint64_t get_size_in_bytes() { return _size_in_bytes; }
uint64_t get_phys_addr() { return (uint64_t)_phys_addr; }
uint64_t get_virt_addr() { return (uint64_t)_virt_addr; }
voi d clear();
void fill_random();
void fill_deadbeef();
bool conpare(DVAHost Buffer&, int verbosity);

Member Functions
Table 41: DMAHostBuffer Class Member Functions

Return Type Function Description
voi d DVAHost Buf f er Constructor. Allocates a DMA buffer of the given size.
voi d ~DVAHost Buf f er Destructor. Deallocates the DMA buffer.
Buf f er St at us | get _stat us Returns an enum value indicating if the buffer was allocated successfully.
ui nt 64._t get _size in_bytes SRue;t;ronrfet:.e buffer size. Currently, buffers larger than 4MB are not

Preliminary Data

Software Development Kit User Guide (UG107)

Return Type Function Description

Returns the physical address of the buffer in the host 64-bit memory

Uint 64 t et phvs addr space. Use this value when passing the buffer address to the

- get_phys_ dma_i ni t () function through the DraCommrand struct host _addr ess

field.
Returns the virtual address of the buffer in the 64-bit address space of the

ui nt 64_t get _virt_addr calling process. Use this address to access the buffer from within the
application source code.

voi d cl ear Clears the contents of the buffer to all zero values.

voi d fill _random Fills the buffer with random values for testing.

voi d fill _deadbeef Fills the buffer with a predictable pattern for testing (Ox DEADBEEF + i).
Compares this buffer to another buffer of the same size. Verbosity = 1

bool conpar e displays differences on the screen. Verbosity = 2 displays both buffers
side-by-side.

Preliminary Data 81

Software Development Kit User Guide (UG107)

DMADescriptorList

Description

This class defines descriptor lists for DMA transactions when using linked-list mode. A descriptor list is a group of
descriptors that are allocated in the same block of adjacent memory locations. Each list consists of (N+1)
descriptors, as shown in the following figure. The first N descriptors are DMADat aDescr i pt or s (defined above),
and the last descriptor is a DMALI nkDescr i pt or (also defined above). The link descriptor points to the base
address of another DMADescr i pt or list, or back to the start of the first DMADescr i pt or Li st in the chain if it is
the last list in the chain.

When operating in linked-list mode, each data descriptor contains the parameter settings for a single DMA
transaction from one block of host memory to device memory, or vice versa. The DMA engine steps through the
entire list, using the parameters in each descriptor to initiate DMA transactions one after another, following link
descriptors as necessary, until the entire list is consumed. Using this method, a large number of sequentual
transactions can be performed with only a single call to dma_i ni t () and dna_st art () . When the

DMADescr i pt or Li st constructor is called, a block of N data descriptors and one link descriptor is allocated in
host memory and initialized to all-zeros. Each descriptor can be accessed in turn using the square-bracket index
operator "[]", and a call to dma_bui | d_dat a_descri pt or () (described above) populates the descriptor with
data. The link descriptor is initialized to refer back to the first data descriptor in the same list, however the
dma_bui Il d_Iink_descri ptor() function can be used to build a chain of more than one list element.

The DMA engine consumes descriptors from device memory, not from the host. Therefore, the descriptors must
be transferred from the host to the device before the DMA operation can begin. The descriptors can be stored
anywhere in device memory, (GDDR6, DDR4, or a BRAM). The descriptors can be written by either DMA or a
sequence of BAR writes. The DMADescr i pt or Li st provides get _phys_addr () and get _virt_addr ()
functions, similar to the DMAHost Buf f er class, to make DMA transfers of the descriptors straightforward.

Preliminary Data 82

Software Development Kit User Guide (UG107)

Limit

Base

Limit 2

Base 2
Limit 1
Basel
Limit O

Base 0

Host Memory (64 bits)

Host Memory (64 bits)

BAR
1 ATU
~. Region
////
BAR Match Mode
ATU
Regions
BAR 7

Address Match Mode

2D NoC (42 bits)

2D NoC (42 bits)

Target

Target 2 + (Limit 2 - Base 2)
Target 2

Target 1+ (Limit 1 - Base 1)
Target 1

Target O + (Limit O - Base 0)

Target O

113824702-02.2023.04.17

Figure 4: DMADescriptorList Structure in Memory

Preliminary Data

83

Software Development Kit User Guide (UG107)

Definition

cl ass DMADescri ptorlList {

public:

enum Descri ptor Status {

STATUS_CXK,

STATUS_ERRCR

H
public:

DVADescr i pt or Li st (PCl Devi ce *devi ce,
~DMADescri ptorList();
DescriptorStatus get_status() { return _status; }

uint64_t get_size in_bytes() { return _size_in_bytes; }
uint64_t get_phys_addr() { return (uint64_t)_phys_addr; }
uint64_t get_virt_addr() { return (uint64_t)_virt_addr; }
uint64_t get_devi ce_phys_addr() { return _device_phys_addr; }
DVADat aDescri ptor *operator[](int);
voi d print(const char *header);

Member Functions
Table 42: DMADescriptorList Cluss Member Functions

int numdescriptors, uint64_t device_phys_addr);

Return Type

Function

Description

Constructor. Allocates a block of num descri pt or s,
DMVADat aDescri pt or s and one DMALi nkDescri pt or. The
data descriptor is initialized to all zero values, and the link

voi d DVADescr i pt or Li st descriptor is initialized to point back to the base address of the
list — this is a stopping criteria for the DMA engine. The
devi ce_phys_addr argument specifies the target address of
the descriptor list in host memory.

voi d ~DMADescr i pt or Li st Destructor. Deallocates the data and link descriptors.

Descri pt or St at us

get _status

Returns an enum value indicating the success or failure of the
descriptor list allocation.

uint 64_t

get _size_in_bytes

Returns the size of the descriptor list in bytes. Use this value
when passing the list size to the dnma_i ni t () function through
the DnraCommand struct.

ui nt 64_t

get _phys_addr

Returns the physical address of the descriptor list in the host
64-bit memory space. Use this value when passing the list
address to the drme_i ni t () function through the DmaCommrand
struct host_address field.

ui nt64_t

get _virt_addr

Returns the virtual address of the descriptor list in the 64-bit
address space of the calling process. Use this address to
access the descriptors in the list from within the C++
application source code.

Preliminary Data 84

Software Development Kit User Guide (UG107)

Return Type Function Description

Returns the devi ce_phys_addr argument passed into the
constructor. It specifies the 42-bit 2D NoC address of the list
ui nt 64_t get _devi ce_phys_addr | when transferred from host memory into device memory. Use
this value when passing the list address to the dma_i ni t ()
function through the DnaConmand struct device_address field.

Allows access to each (num descri ptors + 1) of the list
descriptors (num_descri pt or s, data descriptors, and one
DMVADat aDescri pt or | operator|[] link descriptor) using array semantics. Use this operator when
calling the dna_bui | d_dat a_descri ptor () and

dma_bui I d_l'i nk_descri ptor () functions.

Displays the contents of the descriptor list on the console for

voi d print debugging purposes.

Preliminary Data

Software Development Kit User Guide (UG107)

ATUContext

Description

Contains the context (configuration register settings) of all of the ATU registers. The ATU consists of 100
different regions, each with its own set of six configuration registers. The context consists of a vector of 100
ATURegi on classes (described in the following example).

Definition

cl ass ATUCont ext {
public:
void print();
public:
ATURegi on _regi on[100];
b

Member Functions
Table 43: ATUContext Class Member Functions

) Function Description
Type
. . Displays the context of each enabled region on the console for visualization and debugging.
void print . : .
Regions which are not enabled are skipped.

Preliminary Data

Software Development Kit User Guide (UG107)

ATURegion

Description

Contains the context (configuration register settings) of one ATU region. The context consists of nine individual
32-bit registers, each of which can be read with a set of get functions, or written with a set of set functions. The
control ("_ct rl _") registers consist of a large number of individual bitfields, each of which has its own (boolean
or integer) get and set functions.

Definition

cl ass ATURegi on {
public:
ATURegi on() ;
ATURegi on& oper at or =(const ATURegi on& ot her);
void print();
/1 bitfield getters
int get_region_nunm();
int get_function_num();
bool get_enabl ed();
ATU_MODE get _node();
bool get_invert_node();
bool get_cfg_shift_node();
bool get_fuzzy type_match_code();
bool get_vfbar_match_nmpbde_en();
int get_response_code();
bool get_single_addr_loc_trans_en();
bool get_ph_match_en();
bool get_nsg_code_match_en();
bool get_vf_match_en();
bool get_func_num match_en();
bool get_at_match_en();
bool get_th_match_en();
bool get_addr_match_en();
bool get_td_match_en();
bool get_tc_match_en();
bool get_nsg_type_nat ch_node();
int get_bar_num();
uint64_t get_base_addr();
uint64_t get_limt_addr();
uint64_t get_target_addr();
/1 bitfield setters
voi d set_regi on_nun(int nun;
voi d set_function_nun(int numnm;
voi d set_enabl ed(bool val);
voi d set_node(ATU_MODE node) ;
voi d set_invert_node(bool val);
void set_cfg_shift_node(bool val);
voi d set_fuzzy_type_mat ch_code(bool val);
voi d set_vfbar_match_node_en(bool val);
voi d set_response_code(int val);
voi d set_single_addr_Il oc_trans_en(bool val);
voi d set_ph_match_en(bool val);
voi d set_nsg_code_mat ch_en(bool val);
voi d set_vf_match_en(bool val);

Preliminary Data

Software Development Kit User Guide (UG107)

publ

b

voi d
voi d
voi d
voi d
voi d
voi d

set _func_num mat ch_en(bool val);

set _at _mat ch_en(bool
set _th_match_en(bool

val);
val);

set _addr _nat ch_en(bool val);

set _td_match_en(bool
set _tc_match_en(bool

val);
val);

voi d set_nsg _type_match_node(bool val);
voi d set_bar_nun{int bar_nun);

voi d set_base_addr (uint64_t addr);
void set _limt_addr(uint64_t limt);
voi d set_target_addr(uint64_t addr);
ic:

int region_num

uint32_t iatu_region_ctrl_1_inbound;
uint32_t iatu_region_ctrl_2_inbound;
uint32_t iatu_region_ctrl_3_inbound;
uint32_t iatu_|lw_base_addr_i nbound;

ui nt 32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t

i
i
i
i
uint32_t iatu_upper_base_addr_i nbound;
i
i
i
i

Member Functions

atu_lw _limt_addr_inbound;
atu_upper_limt_
atu_| wr_target _addr _i nbound;
at u_upper _target _addr _i nbound;

addr _i nbound;

Table 44: ATURegion Class Member Functions

RO Function Description
Type
. . Displays the region context on the console for visualization and
voi d print .
debugging.
i nt et redion num Gets the integer region number of this region, which is also the
get_reg - index of the ATURegi on in the ATUCont ext class.
int get _function_num Gets the PCle physical function number of the region.
bool get _enabl ed Returns true if this region is enabled, otherwise false.
Returns the region mode. Either ATU_BAR_MATCH or
ATU_MCDE | get_node ATU_ADDRESS_NATCH.
bool get _i nvert _node Reserved for future use.
bool get _cfgshift_node Reserved for future use.
bool get _fuzzy_type_match_node Reserved for future use.
bool get _vfbar_match_node_en Reserved for future use.
i nt get _response_code Reserved for future use.

Preliminary Data

88

Software Development Kit User Guide (UG107)

RET Function Description
Type
bool get _singl e_addr | oc_trans_en | Reserved for future use.
bool get _ph_match_en Reserved for future use.
bool get _nmsg_code_natch_en Reserved for future use.
bool get _vf_match_en Reserved for future use.
bool get _fun_num mat ch_en Reserved for future use.
bool get _at _match_en Reserved for future use.
bool get _th_match_en Reserved for future use.
bool get _addr _mat ch_en Reserved for future use.
bool get _td_match_en Reserved for future use.
bool get _tc_match_en Reserved for future use.
bool get _msg_type_mat ch_node Reserved for future use.
i nt et bar num Returns the integer index of the BAR. Only valid if the region is
get_bar_ in BAR match mode.
Returns the base (lower) address of the region in the host 64-bit
uint64_t | get_base_addr address space. This address must be in a region of host
memory assigned to a BAR. Only valid in address match mode.
Returns the limit (top) address of the region in the host 64-bit
address space. This address must be in a region of host
uint64_t [get_limt_addr memory assigned to a BAR. It must be a multiple of the
minimum region size (64K), so bits [15:4] must be OXFFF. Only
valid in address match mode.
Returns the base (lower) address of the region in the device 42-
Uint64 t |get target addr bit 2D NoC address space. The device region size must be the
tget get same as on the host, so the device limit address is calculated
automatically.
. . Sets the region number being specified with this ATURegi on
voi d set _regi on_num
class.
voi d set _function_num Sets the physical function number in the region context.
voi d set _enabl ed Sets the enable bitto t r ue or f al se in the region context.
voi d set mode Sets the mode in the region context. Either ATU_BAR_MATCH or
- ATU_ADDRESS NMATCH.

Preliminary Data

89

Software Development Kit User Guide (UG107)

RET Function Description
Type

voi d set _invert_node Reserved for future use.

voi d set _cfg_shift_node Reserved for future use.

voi d set _fuzzy_type_match_code Reserved for future use.

voi d set _vfbar_mat ch_node_en Reserved for future use.

voi d set _response_code Reserved for future use.

voi d set _singl e_addr_| oc_trans_en | Reserved for future use.

voi d set _ph_match_en Reserved for future use.

voi d set _nmsg_code_nat ch_en Reserved for future use.

voi d set _vf _match_en Reserved for future use.

voi d set _fun_num match_en Reserved for future use.

voi d set _at_match_en Reserved for future use.

voi d set _th_nmatch_en Reserved for future use.

voi d set _addr_match_en Reserved for future use.

voi d set _td_match_en Reserved for future use.

voi d set _tc_match_en Reserved for future use.

voi d set _nsg_type_mat ch_node Reserved for future use.

voi d set _bar_num Sets the BAR number in the region context.
Sets the base (lower) address of the region in the host 64-bit

voi d set _base_addr address space. This address must be in a region of host
memory assigned to a BAR. Only valid in address match mode.
Sets the limit (top) address of the region in the host 64-bit
address space. This address must be in a region of host

voi d set _|imt_addr memory assigned to a BAR. It must be a multiple of the
minimum region size (64K), so bits [15:4] must be OXFFF. Only
valid in address match mode.
Sets the base (lower) address of the region in the device 42-bit

voi d set target addr 2D NoC address space. The device region size must be the

—target_ same as on the host, so the device limit address is calculated

automatically.

Preliminary Data

90

Software Development Kit User Guide (UG107)

MSIXContext

Description

This class holds all of the configuration register settings for the MSI-X controller. The class members can be filled
in with the current values of the corresponding configuration register settings by calling the
nmsi x_get _cont ext () function. Low-level knowledge of the configuration registers, and the individual bit fields
of each registers, is required to make use of those values. Not all bit fields are meaningful when read.

Definition

cl ass MSI XCont ext {

publi c:

MBI XCont ext () ;
void print();

publi c:

uint32_t nsix_cap_id_n
uint32_t nsi x_tabl e_of
uint32_t nsi x_pba_offs
ui nt 32_t nsi x_address_match_| ow,

uint32_t nsi x_address_nat ch_hi gh;
ui nt 32_t nsi x_door bel |
uint32_t nsix_ramctrl

Member Functions
Table 45: MSIXContext Class Member Functions

ext _ctrl _reg;
fset_reg;
et_reg;

1

Method Return Type Description
MBI XCont ext none Constructor
print voi d Print the values for all of the fields.
Members

Table 46: MSIXContext Class Member Parameters

Type

Parameter

Description

uint32_t |msix_cap_id _next_ctrl _reg

The MSI-X capability register.

uint32_t |neix_table_offset_reg

The offset of the MSI-X vector table from the MSI-X BAR.

uint32_t | nsi x_pba_of fset_reg

BAR.

The offset of the MSI-X pending bit array (PBA) from the MSI-X

uint32_t | nsi x_address_match_| ow

The lower-32 bits of the address match register.

uint32_t | nei x_address_mat ch_hi gh

The upper-32 bits of the address match register.

Preliminary Data

91

Software Development Kit User Guide (UG107)

Type Parameter Description
ui nt32_t | nmei x_door bel | The MSI-X doorbell register.
uint32_t |nsix_ramctrl The MSI-X RAM control register.

Preliminary Data

92

Software Development Kit User Guide (UG107)

Chapter - 11: Driver Translation Resource Handles

ACX_PCIE_dev_handle

Description

Abstract handle to refer to a PCle device. Used with other translation functions to perform operations on the
device referred to by the handle.

ACX_BAR_handle

Description

Abstract handle to refer to a device BAR. Used with other translation functions to perform read/write operations
on a specific device BAR which is referred to by the handle.

Note

@ ABAR handle is associated with the context of the device with which it was created. If working with
multiple devices, separate BAR handles must be created for each device.

ACX_DMA_buffer_handle

Description

Abstract handle to refer to a DMA buffer. This handle is only used to hold context for a DMA buffer and is only
used in the translation functions for cleanup of a DMA buffer.

Note

A DMA buffer handle is associated with the context of the device with which it was created. DMA

@ handles cannot be used across multiple devices. If working with multiple devices, separate DMA buffers
must be allocated for each device. If replicating data across multiple devices, the data must be copied
into separate DMA buffers and then uploaded to the device associated with that buffer.

Preliminary Data

93

Software Development Kit User Guide (UG107)

Chapter - 12: Driver Translation Functions

acx_pcie_device_open()

Description

opens an Achronix PCle device for reading and writing.
Call

ACX_PCl E_dev_handl e* acx_pci e_devi ce_open (uint32_t device_id);

Arguments
Table 47: Achronix PCIE Device Open Function Arguments

Type Argument Description

uint32_t device_id ID of the device to be opened.

Return Value

Returns a pointer to a handle for a PCle device.

Note

A device must be opened by calling acx_pci e_devi ce_open() before any other translation
@ functions are called. When a device is opened, it must be closed by calling

acx_pci e_devi ce_cl ose() for proper resource cleanup or before trying to call

acx_pci e_devi ce_open() again.

Preliminary Data

Software Development Kit User Guide (UG107)

acx_pcie_device_close()

Description

Closes an open Achronix PCle device. The device pointer should be discarded after calling this function.

Call

voi d acx_pci e_devi ce_cl ose (ACX_PCl E_dev_handl e *devi ce);

Arguments
Table 48: Achronix PCIE Device Close Function Arguments

Type Argument Description

ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.

Return Value

The function does not have a return value.

Preliminary Data

95

Software Development Kit User Guide (UG107)

acx_bar_init()

Description

Prepares a device BAR for reading or writing.

Note

©@ When a BAR resource is opened by calling acx_bar _i ni t (), it must be closed by calling
acx_bar _cl eanup() before trying to call acx_bar i ni t () again.

Call

ACX_BAR handl e* acx_bar _init (ACX_PCl E_dev_handl e *device, uint32_t bar_id);

Arguments
Table 49: Achronix BAR Initialize Function Arguments
Type Argument Description
ACX_PCl E_dev_handl e* devi ce Pointer to an opened device handle.
ui nt32_t bar _id ID of the BAR to be initialized.

Return Value

Returns a pointer to an ACX_BAR handl e on success or NULL on failure.

Preliminary Data

96

Software Development Kit User Guide (UG107)

acx_bar_cleanup()

Description

Perofrms any needed cleanup on an ACX_BAR handl e pointer. The BAR pointer should be discarded after
calling this function.

Call

voi d acx_bar_cl eanup (ACX _PCl E_dev_handl e *devi ce, ACX BAR handl e *bar);

Arguments
Table 50: Achronix BAR Cleanup Function Arguments
Type Argument Description
ACX_PCl E_dev_handl e* devi ce Pointer to an opened device handle.
ACX_BAR_handl e* bar Pointer to an initilized BAR handle.

Return Value

The function does not have a return value.

Preliminary Data

Software Development Kit User Guide (UG107)

acx_get_bar_size()

Description

Gets the amount of mapped memory for a BAR in bytes. The bar size is written into the si ze_pt r argument.

Call

int acx_get_bar_size (ACX_PCl E dev_handl e *device, uint32_t bar_id, uint64_t *size_ptr);

Arguments
Table 51: Achronix Get BAR Size Function Arguments

Type Argument Description

ACX_PCl E_dev_handl e* | devi ce Pointer to an opened device handle.

uint 32_t bar _id ID of the BAR from which to get the size.

Pointer to a ui nt 64_t into which the size of the bar in bytes is to be

uint64 t* size ptr :
- P written.

Return Value

Returns 0 on success or 1 on failure.

Preliminary Data

Software Development Kit User Guide (UG107)

acx_get_bar_start()

Description

Get the host-side address mapping for the start of a BAR.

Note

T The address that this function stores in st art _pt r is not meant to be written to or read from directly

by the application. The address returned by this function corresponds to some physical memory
managed by the Kernel. Call the reading and writing functions instead.

Call

int acx_get _bar_start (ACX_PClE dev_handl e *device, uint32_t bar_id, uint64_t *start_ptr);

Arguments
Table 52: Achronix Get BAR Start Function Arguments
Type Argument Description
ACX_PCl E_dev_handl e* |device Pointer to an opened device handle.
ui nt 32_t bar_id ID of the BAR from which to retrieve the start address.
uint64_tx* start _ptr | pointerto a ui nt 64_t where the start of the BAR is to be written.

Return Value

Returns 0 on success or 1 on failure.

Preliminary Data

99

Software Development Kit User Guide (UG107)

acx_dma_malloc()

Description

Allocates memory for a buffer that can be used in DMA transfers. The application code should use the
vi rtual _addr ess pointer to write/read from the buffer. The DMA address is a hardware address that is
needed by the DMA engine. For more information on the DMA engine, refer to the DMA Transfers (see page 33)

section.

Note

@ The size of a DMA buffer is limited by the page size of the system (typically 4MB). For larger DMA
transfers, refer to the section on DMA Linked List Mode (see page 36).

Call

ACX_DMA _buf fer_handl e* acx_dma_nal | oc (ACX_PCl E_dev_handl e *device, uint64_t size_in_bytes, void
**virtual _address, void **dna_address);

Arguments
Table 53: Achronix DMA Malloc Function Arguments
Type Argument Description
ACX_PCl E_dev_handl e* | devi ce Pointer to an opened device handle.

ui nt 64 _t size_in_bytes ID of the BAR from which to retrieve the start address.
VoI d* * virtual address A pointer to a void pointer to be loaded with the starting virtual
- address of the buffer.
Vi d** dne_addr ess A pointer to a void pointer to be loaded with the physical address

of the buffer.

Return Value

Returns a pointer to an ACX_DMA buf f er _handl e on success or NULL on failure.

Preliminary Data 100

Software Development Kit User Guide (UG107)

acx_dma_free()

Description

Frees the memory asscociated with an ACX_DMA_buf f er _handl| e pointer. The ACX_DVA buf f er _handl e

pointer should be discarded after calling this function.

Call

void acx_dma_free (ACX_PCl E_dev_handl e *devi ce, ACX DVA buffer_handl e *dma_nem handl e) ;

Arguments
Table 54: Achronix DMA Free Function Arguments
Type Argument Description
ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.

ACX_DMA buf fer _handl e*

dma_nem handl e Pointer to a valid ACX_DVA buf f er _handl e.

Return Value

The function does not have a return value.

Preliminary Data

101

Software Development Kit User Guide (UG107)

acx_read_uint8()

Description

Reads single-byte unsigned integers from a BAR into a supplied buffer.

Call

int acx_read_uint8 (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handle *bar, uint64_t offset, uint8_t

*buffer, uint32_t count);
Arguments
Table 55: Achronix Read uint8 Function Arguments
Type Argument Description
ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.
ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.
ui nt 64_t of f set Offset from the start of the BAR from which to start reading.
uint8_ t* buf f er Pointer to the start of a buffer into which the data is to be written.
uint32_t count The number of ui nt 8 values to read from the BAR.

Return Value

Returns the number of bytes read.

Preliminary Data

102

Software Development Kit User Guide (UG107)

acx_read_uint16()

Description

Reads two-byte unsigned integers from a BAR into a supplied buffer.

Call

int acx_read_uint16 (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handle *bar, uint64_t offset, uintl16_t

*buffer, uint32_t count);

Arguments
Table 56: Achronix Read uint16 Function Arguments
Type Argument Description
ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.
ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.
ui nt 64_t of f set Offset from the start of the BAR from which to start reading.
uintle_t* buf f er Pointer to the start of a buffer into which the data is to be written.
uint32_t count The number of ui nt 16 values to read from the BAR.

Return Value

Returns the number of bytes read.

Preliminary Data

103

Software Development Kit User Guide (UG107)

acx_read_uint32()

Description

Reads four-byte unsigned integers from a BAR into a supplied buffer.

Call

int acx_read_uint32 (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handl e *bar, uint64_t offset, uint32_t

*buffer, uint32_t count);

Arguments
Table 57: Achronix Read uint32 Function Arguments
Type Argument Description
ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.
ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.
ui nt 64_t of f set Offset from the start of the BAR from which to start reading.
uint32_t* buf f er Pointer to the start of a buffer into which the data is to be written.
uint32_t count The number of ui nt 32 values to read from the BAR.

Return Value

Returns the number of bytes read.

Preliminary Data

104

Software Development Kit User Guide (UG107)

acx_read_uint64()

Description

Reads eight-byte unsigned integers from a BAR into a supplied buffer.

Call

int acx_read_uint64 (ACX_PCl E_dev_handl e *devi ce, ACX_BAR handl e *bar, uint64_t offset, uint64_t

*buffer, uint32_t count);

Arguments
Table 58: Achronix Read uint64 Function Arguments
Type Argument Description
ACX_PCl E_dev_handl| e* devi ce Pointer to an opened device handle.
ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.
ui nt 64_t of f set Offset from the start of the BAR from which to start reading.
uinte4_tx* buf f er Pointer to the start of a buffer into which the data is to be written.
uint32_t count The number of ui nt 64 values to read from the BAR.

Return Value

Returns the number of bytes read.

Preliminary Data

105

Software Development Kit User Guide (UG107)

acx_write_uint8()

Description

Writes single-byte unsigned integers from a buffer into a BAR.

Call

int acx_wite_uint8 (ACX_PCl E_dev_handl e *device, ACX BAR handle *bar, uint64_t offset, uint8_t

*buffer, uint32_t count);
Arguments
Table 59: Achronix Write unit8 Function Arguments
Type Argument Description
ACX_PCI E_dev_handl e* devi ce Pointer to an opened device handle.

ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.

ui nt 64_t of f set Offset from the start of the BAR to which to start writing.
uint8_ t* buf f er Pointer to the start of a buffer from which the data is to be read.
uint32_t count The number of ui nt 8 values to write to the BAR.

Return Value

Returns the number of bytes written.

Preliminary Data

106

Software Development Kit User Guide (UG107)

acx_write_uint16()

Description

Writes two-byte unsigned integers from a buffer into a BAR.

Call

int acx_wite_uintl6 (ACX_PCl E dev_handl e *device, ACX BAR handle *bar, uint64_t offset, uintl6_t

*buffer, uint32_t count);

Arguments
Table 60: Achronix Write uint16 Function Arguments
Type Argument Description
ACX_PCI E_dev_handl e* devi ce Pointer to an opened device handle.

ACX_BAR_handlI e* bar Pointer to a valid BAR handle from which to read.

ui nt 64_t of f set Offset from the start of the BAR into which to start writing.
uintle_t* buf f er Pointer to the start of a buffer from which the data is to be read.
uint32_t count The number of ui nt 16 values to write to the BAR.

Return Value

Returns the number of bytes written.

Preliminary Data

107

Software Development Kit User Guide (UG107)

acx_write_uint32(

Description

Writes four-byte unsigned integers from a buffer into a BAR.

Call

int acx_wite_uint32 (ACX_PCl E _dev_handl e *device, ACX BAR handle *bar, uint64_t offset, uint32_t

*buffer, uint32_t count);

Arguments
Table 61: Achronix Write uint32 Function Arguments
Type Argument Description
ACX_PCI E_dev_handl e* devi ce Pointer to an opened device handle.

ACX_BAR_handlI e* bar Pointer to a valid BAR handle.

ui nt 64_t of f set Offset from the start of the BAR to which to start writing.
uint32_t* buf f er Pointer to the start of a buffer from which the data is to be read.
uint32_t count The number of ui nt 32 values to write to the BAR.

Return Value

Returns the number of bytes written.

Preliminary Data

108

Software Development Kit User Guide (UG107)

acx_write_uint64()

Description
Writes eight-byte unsigned integers from a buffer into a BAR.

Call

int acx_write_uint64 (ACX_PCl E dev_handl e *device, ACX BAR handle *bar, uint64_t offset, uint64_t

*buffer, uint32_t count);

Arguments
Table 62: Achronix Write uint64 Function Arguments
Type Argument Description
ACX_PCI E_dev_handl e* devi ce Pointer to an opened device handle.

ACX_BAR_handlI e* bar Pointer to a valid BAR handle.

ui nt 64_t of f set Offset from the start of the BAR into which to start writing.
uinte4_tx* buf f er Pointer to the start of a buffer from which the data is to be read.
uint32_t count The number of ui nt 64 values to write to the BAR.

Return Value

Returns the number of bytes written.

Preliminary Data

109

Software Development Kit User Guide (UG107)

msix_status_to_string()

Description

Converts an M5i xSt at us enum to a C string.

Call

const char *nsix_status_to_string(MsixStatus);

Arguments

Table 63: MSI-X Status to String Function Arguments

Type

Argument

Description

Msi xSt at us

st at us

MsixStatus enum value to convert to a string.

Return Value

Returns a pointer to the string representation of the status.

Preliminary Data

110

Software Development Kit User Guide (UG107)

acx_interrupt_wait()

Description

Waits for an interrupt to be triggered at the given interrupt vector index, and then returns to the caller.

Call

Msi xSt at us acx_i nterrupt_wait (ACX _PClE_dev_handl e *device, uint32_t nmessage_id, unsigned int

timeout _ns, unsigned int* interrupt_count);
Arguments
Table 64: Achronix Interrupt Wait Function Arguments
Type Argument Description
ACX_PCI E_dev_handl e* | devi ce Pointer to an opened device handle.

uint32_t

nmessage_id

The index of the interrupt vector being queried.

unsi gned i nt

ti meout _ns

The number of milliseconds to wait for an interrupt to occur. A
value of zero indicates wait forever.

unsi gned int*

i nterrupt _count

A pointer to an unsigned integer to contain the number of
interrupts received by the driver since it was loaded.

Return Value

Returns one of the values for MSI-X status defined in the MsixStatus enum.

Preliminary Data

111

Software Development Kit User Guide (UG107)

acx_cancel_wait()

Description

Cancelacalltoacx_i nterrupt _wait () with the specifed nessage_i d in a different thread. This function
does not wait for the waiting thread to be finished with the nsi x_i nterrupt _wai t () function call.

Call

voi d acx_cancel _wait (ACX _PCl E dev_handl e *device, uint32_t nessage_id);

Arguments
Table 65: Achronix Cancel Wait Function Arguments
Type Argument Description
ACX_PCl E_dev_handl e* devi ce Pointer to an opened device handle.

uint32_t

nessage_id

The index of the interrupt vector that is being cancelled.

Return Value

This function does not have a return value.

Preliminary Data

112

Software Development Kit User Guide (UG107)

Chapter - 13: Porting Guide

This section contains information about backward compatibility, and when backward compatibility is not
maintained, what changes might be required to port existing software to new versions of this SDK.

Porting to Version 1.9

The release of the Achronix Software Development Kit version 1.9 brought support for a native Achronix device
driver, as well as the original BittWare driver. Supporting both required the introduction of the Achronix driver
translation API to wrap around the low-level driver functions. For more information on the driver translation API,
refer to the Software Stack (see page 16) and Driver Translation Functions (see page 94) sections. The
inclusion of the driver translation API means that some older SDK code is no longer compatible with release
version 1.9. The following changes are required.

ACX Resource Handles

In order to support multiple device driver APIs, all driver resources are now tracked and controlled via the use of
abstracted resource handles. There are 3 basic resource handle types:

Handl e Types

ACX_PCl E_dev_handl e
ACX_BAR_handl e
ACX_DWVA buffer_handl e

For more information on these handles, please refer to the Driver Translation Resource Handles (see page 93)
section.

Older SDK code used the BittWare primitive resource types. In order to upgrade to version 1.9, the following
general type conversions need to be applied:

Handl e conversi ons

HBwpci Devi ce -> ACX_PCl E_dev_handl e
Bwpci Ms -> ACX _BAR handle // When a Bittware nenory space reffers to a BAR
Bwpci Ms -> ACX_DWMVA buffer_handle // Wen a bittware nenory space reffers to a DVA buffer

Since the BittWare memory space primitive, Bwpci M, is able to refer to both a BAR and a buffer, some care is
necessary when converting types. Make sure to choose the ACX_BAR_handl e or ACX_DVMA_buf f er _handl e,
as appropriate. For reference on which SDK functions return or expect BAR or DMA handles, consult the SDK
Functions (see page 39) section.

Preliminary Data 113

Software Development Kit User Guide (UG107)

BARs and the acxsdk::PClDevice Object

In older versions of the SDK, BARs could be referred to at any point in the application via the globally defined
Bwpci MsPr eDef i ned enum. With the introduction of the driver translation API, this is no longer possible.
Ownership and lifetime management of the BAR resources is now the responsibility of the acxsdk: : PCl Devi ce
object. To get a BAR resource handle, the acxsdk: : PCl Devi ce: : get _bar _handl e() function must be
used. This also means that an acxsdk: : PCl Devi ce object must be constructed before attempting to get a BAR
resource handle. The lifetime of the BAR resource handle is connected to the lifetime of the owning acxsdk: :
PCI Devi ce object. If the owning acxsdk: : PCl Devi ce object is destroyed, all outstanding BAR resource
handles that were gathered from that object are no longer valid and should not be used.

The following is a code conversion example:

BAR handl e conversi ons

//Pre SDK 1.9 code
Bwpci Ms reg_ctrl _bar = BW M5_BARO;
Bwpci Ms csr_bar = BW MS_BARS;

//Post SDK 1.9 code
acxsdk: : PCl Devi ce device(device_id); // a device nust be constructed before getting a BAR

resource handl e
ACX_BAR handl e *reg_ctrl _bar = device.get_bar_handl e(0);
ACX_BAR handl e *csr_bar = devi ce. get_bar_handl e(3);

Part Name Removals
The part name for the Speedster7t AC7t1500ES1 FPGA has been removed from the Par t Nanme enum. When
referring to this part, use the same name without the "ES1" designation as follows:

Handl e conversions

AC7t 1500ES1 -> AC7t 1500

Miscellaneous

Several of the software examples that are shipped with the SDK make use of the acxsdk: : pci _link_is_up
function. This function serves as a simple way to ensure PCI link health. With the introduction of the driver
translation API, this function now requires a reference to a BAR which is mapped to CSR space.

The folowing is a code conversion example:
pci _link_is_up conversion

//Pre SDK 1.9 code
bool Iink_up = acxsdk::pci_link_is_up(device.get_device());

//Post SDK 1.9 code
uint32_t csr_bar_id = 3;
bool Iink_up = acxsdk::pci_link_is_up(device.get_device(), device.get_bar_handl e(csr_bar_id));

Preliminary Data 114

Software Development Kit User Guide (UG107)

Revision History

Version Date Description
1.0 21 Oct 2022 Initial Achronix release.
Added Achronix PCI device driver
Add installation and configurations details for both BittWare and Achronix
1.1 13 Jul 2023 drivers
Added API for MSI-X interrupts
Added conversion information to v1.9 code base
1.2 17 Oct 2023 Remove references to end-of-life devices.

Preliminary Data

115

	Introduction
	SDK Software Stack
	Downloading, Compiling, and Installing the Achronix SDK
	Prerequisites
	Downloading the Achronix SDK
	Unzipping the Achronix SDK
	Compiling and Installing the Achronix SDK
	Compiling and Installing the Achronix SDK for Use With the Achronix Driver
	Compiling with Debug Symbols
	Installing the SDK and Device Driver
	Uninstalling the SDK and Device Driver
	Starting the Device Driver

	Compiling and Installing the Achronix SDK for Use With the BittWare Driver
	Compiling the Achronix SDK
	Compiling with Debug Symbols
	Installing the SDK
	Uninstalling the SDK
	Starting the Device Driver

	Testing the Achronix PCIe Device Driver
	Testing the Achronix SDK

	Modifying the Device Driver
	Modifying the Achronix Device Driver
	Modifying the BittWare Device Driver

	Developing Applications
	Minimum Requirements
	Compilation

	Developing Applications Without High-Level SDK Code

	The PCIe Programming Model
	Linux Host Memory Mapped Addressing
	FPGA Memory Addressing

	PCIe Configuration Example
	Example BAR Configuration
	Example Software Implementation
	Implementation Recommendations

	Address Translation Unit (ATU)
	BAR Match Mode
	Address Match Mode

	MSI-X Interrupts
	DMA Transfers
	2D NoC Physical Address Calculations
	Basic DMA Operation
	Linked List Mode

	Design Requirements
	Achronix_DDR4.cpp
	Achronix_GDDR6.cpp
	Achronix_PCI.cpp
	DMA_example.cpp

	SDK Functions
	Quick Reference Table
	util_calc_nap_absolute_addr()
	Description
	Call
	Arguments
	Return Value

	util_wait_microseconds()
	Description
	Call
	Arguments
	Return Value

	util_wait_seconds()
	Description
	Call
	Arguments
	Return Value

	pci_reg_write_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_read_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_set_bits_offset()
	Description
	Call
	Arguments
	Return Value

	pci_reg_clear_bits_offset()
	Description
	Call
	Arguments
	Return Value

	pci_read_reg_ctrl_version()
	Description
	Call
	Arguments
	Return Value

	pci_link_is_up()
	Description
	Call
	Arguments
	Return Value

	dma_build_data_descriptor()
	Description
	Call
	Arguments
	Return Value

	dma_build_link_descriptor()
	Description
	Call
	Arguments
	Return Value

	dma_init()
	Description
	Call
	Arguments
	Return Value

	dma_config()
	Description
	Call
	Arguments
	Return Value

	dma_start()
	Description
	Call
	Arguments
	Return Value

	dma_halt()
	Description
	Call
	Arguments
	Return Value

	dma_print_stats()
	Description
	Call
	Arguments
	Return Value

	dma_get_status()
	Description
	Call
	Arguments
	Return Value

	dma_wait()
	Description
	Call
	Arguments
	Return Value

	atu_get_context()
	Description
	Call
	Arguments
	Return Value

	atu_find_regions()
	Description
	Call
	Arguments
	Return Value

	atu_get_region()
	Description
	Call
	Arguments
	Return Value

	atu_put_region()
	Description
	Call
	Arguments
	Return Value

	msix_is_enabled()
	Description
	Call
	Arguments
	Return Value

	msix_get_table_size()
	Description
	Call
	Arguments
	Return Value

	msix_get_context()
	Description
	Call
	Arguments
	Return Value

	msix_get_vector()
	Description
	Call
	Arguments
	Return Value

	msix_get_pending_bit()
	Description
	Call
	Arguments
	Return Value

	msix_set_function_mask()
	Description
	Call
	Arguments
	Return Value

	msix_set_vector_mask()
	Description
	Call
	Arguments
	Return Value

	msix_print_vectors()
	Description
	Call
	Arguments
	Return Value

	msix_print_pending_bits()
	Description
	Call
	Arguments
	Return Value

	msix_interrupt()
	Description
	Call
	Arguments
	Return Value

	msix_interrupt_wait()
	Description
	Call
	Arguments
	Return Value

	msix_cancel_wait()
	Description
	Call
	Arguments
	Return Value

	SDK Structures
	DmaCommand_t
	Description
	Definition
	Fields

	DMADataDescriptor
	Description
	Definition
	Fields

	DMALinkDescriptor
	Description
	Definition
	Fields

	SDK Classes
	PCIDevice
	Description
	Definition
	Member Functions

	DMAHostBuffer
	Description
	Definition
	Member Functions

	DMADescriptorList
	Description
	Definition
	Member Functions

	ATUContext
	Description
	Definition
	Member Functions

	ATURegion
	Description
	Definition
	Member Functions

	MSIXContext
	Description
	Definition
	Member Functions
	Members

	Driver Translation Resource Handles
	ACX_PCIE_dev_handle
	Description

	ACX_BAR_handle
	Description

	ACX_DMA_buffer_handle
	Description

	Driver Translation Functions
	acx_pcie_device_open()
	Description
	Call
	Arguments
	Return Value

	acx_pcie_device_close()
	Description
	Call
	Arguments
	Return Value

	acx_bar_init()
	Description
	Call
	Arguments
	Return Value

	acx_bar_cleanup()
	Description
	Call
	Arguments
	Return Value

	acx_get_bar_size()
	Description
	Call
	Arguments
	Return Value

	acx_get_bar_start()
	Description
	Call
	Arguments
	Return Value

	acx_dma_malloc()
	Description
	Call
	Arguments
	Return Value

	acx_dma_free()
	Description
	Call
	Arguments
	Return Value

	acx_read_uint8()
	Description
	Call
	Arguments
	Return Value

	acx_read_uint16()
	Description
	Call
	Arguments
	Return Value

	acx_read_uint32()
	Description
	Call
	Arguments
	Return Value

	acx_read_uint64()
	Description
	Call
	Arguments
	Return Value

	acx_write_uint8()
	Description
	Call
	Arguments
	Return Value

	acx_write_uint16()
	Description
	Call
	Arguments
	Return Value

	acx_write_uint32()
	Description
	Call
	Arguments
	Return Value

	acx_write_uint64()
	Description
	Call
	Arguments
	Return Value

	msix_status_to_string()
	Description
	Call
	Arguments
	Return Value

	acx_interrupt_wait()
	Description
	Call
	Arguments
	Return Value

	acx_cancel_wait()
	Description
	Call
	Arguments
	Return Value

	Porting Guide
	Porting to Version 1.9
	ACX Resource Handles
	BARs and the acxsdk::PCIDevice Object
	Part Name Removals
	Miscellaneous

	Revision History

